Genetica

, 102:349 | Cite as

Distribution of fitness effects caused by random insertion mutations in Escherichia coli

  • Santiago F. Elena
  • Lynette Ekunwe
  • Neerja Hajela
  • Shenandoah A. Oden
  • Richard E. Lenski

Abstract

Very little is known about the distribution of mutational effects on organismal fitness, despite the fundamental importance of this information for the study of evolution. This lack of information reflects the fact that it is generally difficult to quantify the dynamic effects of mutation and natural selection using only static distributions of allele frequencies. In this study, we took a direct approach to measuring the effects of mutations on fitness. We used transposon-mutagenesis to create 226 mutant clones of Escherichia coli. Each mutant clone carried a single random insertion of a derivative of Tn 10. All 226 mutants were independently derived from the same progenitor clone, which was obtained from a population that had evolved in a constant laboratory environment for 10,000 generations. We then performed competition experiments to measure the effect of each mutation on fitness relative to a common competitor. At least 80% of the mutations had a significant negative effect on fitness, whereas none of the mutations had a significant positive effect. The mutations reduced fitness by about 3%, on average, but the distribution of fitness effects was highly skewed and had a long, flat tail. A compound distribution, which includes both gamma and uniform components, provided an excellent fit to the observed fitness values.

deleterious mutations Escherichia coli fitness insertion mutations transposition 

References

  1. Barton, N.H. & M. Turelli, 1987. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genetical Res. 49: 157-173.Google Scholar
  2. Barton, N.H. & M. Turelli, 1989. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet. 23: 337-370.PubMedGoogle Scholar
  3. Butcher, D., 1995. Muller's ratchet, epistasis and mutation effects. Genetics 141: 431-437.PubMedGoogle Scholar
  4. Charlesworth, D., M.T. Morgan & B. Charlesworth, 1993. Mutation accumulation in finite outbreeding and inbreeding populations. Genetical Res. 61: 39-56.Google Scholar
  5. Chao, L., C. Vargas, B.B. Spear & E.C. Cox, 1983. Transposable elements as mutator genes in evolution. Nature 303: 633-635.PubMedCrossRefGoogle Scholar
  6. Clark, A.G., L. Wang & T. Hulleberg, 1995a. Spontaneous mutation rate of modifiers of metabolism in Drosophila. Genetics 139: 767-779.PubMedGoogle Scholar
  7. Clark, A.G., L. Wang & T. Hulleberg, 1995b. P-element induced variation in metabolic regulation in Drosophila. Genetics 139: 337-348.PubMedGoogle Scholar
  8. Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. New York: Harper & Row.Google Scholar
  9. Drake, J.W., 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88: 7160-7164.PubMedCrossRefGoogle Scholar
  10. Dykhuizen, D.E. & A.M. Dean, 1990. Enzyme activity and fitness: evolution in solution. Trends Ecol. Evol. 5: 257-262.CrossRefGoogle Scholar
  11. Dykhuizen, D.E. & D.L. Hartl, 1983. Selection in chemostats. Microbiol. Rev. 47: 150-168.PubMedGoogle Scholar
  12. Elena, S.F. & R.E. Lenski, 1997. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395-398.PubMedCrossRefGoogle Scholar
  13. Gerrish, P.J. & R.E. Lenski, 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102/103: 127-144.PubMedCrossRefGoogle Scholar
  14. Gregory, W.C., 1965. Mutation frequency, magnitude of change and the probability of improvement in adaptation. Radiation Botany 5 (suppl.): 429-441.Google Scholar
  15. Haldane, J.B.S., 1927.Amathematical theory of natural and artificial selection. V. Selection and mutation. Proc. Camb. Phil. Soc. 23: 838-844.CrossRefGoogle Scholar
  16. Haldane, J.B.S., 1937. The effect of variation on fitness. Amer. Nat. 71: 337-349.CrossRefGoogle Scholar
  17. Hill, W.G. & J. Rasbash, 1986. Models of long-term artificial selection in finite population with recurrent mutation. Genetical Res. 48: 125-131.Google Scholar
  18. Houle, D., D.K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness in Drosophila. Nature 359: 58-60.PubMedCrossRefGoogle Scholar
  19. Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational variabilities. Genetics 143: 1467-1483.PubMedGoogle Scholar
  20. Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315-1322.PubMedGoogle Scholar
  21. Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993-1999.PubMedGoogle Scholar
  22. Keightley, P.D. & W.G. Hill, 1988. Quantitative genetic variability maintained by mutation-stabilizing selection balance in finite populations. Genetical Res. 52: 33-43.Google Scholar
  23. Kibota, T.T. & M. Lynch, 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694-696.PubMedCrossRefGoogle Scholar
  24. Kimura, M., 1979. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci., USA 76: 3440-3444.PubMedCrossRefGoogle Scholar
  25. Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.Google Scholar
  26. Kleckner, N., J. Bender & S. Gottesman, 1991. Uses of transposons with emphasis on Tn10. Meth. Enzymol. 204: 139-180.PubMedCrossRefGoogle Scholar
  27. Kondrashov, A.S., 1993. Classification of hypotheses on the advantage of amphimixis. J. Heredity 84: 372-387.Google Scholar
  28. Kondrashov, A.S., 1994. Muller's ratchet under epistatic selection. Genetics 136: 1469-1473.PubMedGoogle Scholar
  29. Lande, R., 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genetical Res. 26: 221- 235.CrossRefGoogle Scholar
  30. Lande, R., 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47-65.Google Scholar
  31. Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460-1469.CrossRefGoogle Scholar
  32. Lenski, R.E., 1988. Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425-432.CrossRefGoogle Scholar
  33. Lenski, R.E., 1992. Experimental evolution, pp. 125-140 in Encyclopedia of Microbiology, Vol. 2, edited by J. Lederberg. San Diego: Academic Press.Google Scholar
  34. Lenski, R.E., M.R. Rose, S. C. Simpson & S.C. Tadler, 1991. Longterm experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Amer. Nat. 138: 1315- 1341.CrossRefGoogle Scholar
  35. Lenski, R.E. & M. Travisano, 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808-6814.PubMedCrossRefGoogle Scholar
  36. Levin, B.R. & R.E. Lenski, 1983. Coevolution in bacteria and their viruses and plasmids, pp. 99-127 in Coevolution, edited by D. J. Futuyma & M. Slatkin. Sunderland, MA: Sinauer Associates.Google Scholar
  37. Levin, B.R., F.M. Stewart & L. Chao, 1977. Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Amer. Nat. 111: 3-24.CrossRefGoogle Scholar
  38. López, M.A. & C. López-Fanjul, 1993. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genetical Res. 61: 117-126.Google Scholar
  39. Lyman, R.F., F. Lawrence, S.V. Nuzhdin & T.F.C. Mackay, 1996. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143: 277-292.PubMedGoogle Scholar
  40. Lynch, M., J. Conery & R. Bürger, 1995. Mutation accumulation and the extinction of small populations. Amer. Nat. 146: 489-518.CrossRefGoogle Scholar
  41. Lynch, M. & W. Gabriel, 1990. Mutation load and the survival of small populations. Evolution 44: 1725-1737.CrossRefGoogle Scholar
  42. Mackay, T.F.C., R.F. Lyman & M.S. Jackson, 1992. Effects of P element insertion on quantitative traits in Drosophila melanogaster. Genetics 130: 315-332.PubMedGoogle Scholar
  43. Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1-19.PubMedGoogle Scholar
  44. Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 333-335.Google Scholar
  45. Muller, H.J., 1950. Our load of mutations. Amer. J. Human Genet. 2: 111-176.Google Scholar
  46. Muller, H.J., 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2-9.Google Scholar
  47. Nguyen, T.N.M., Q.G. Phan, L.P. Duong, K.P. Bertrand & R.E. Lenski, 1989. Effects of carriage and expression of the Tn10 tetracycline resistance operon on the fitness of Escherichia coli K12. Mol. Biol. Evol. 6: 213-225.PubMedGoogle Scholar
  48. Ohta, T., 1977. Extensions to the neutral mutation random drift hypothesis, pp. 148-167 in Molecular Evolution and Polymorphism, edited by M. Kimura. Mishima, Japan: National Institute of Genetics.Google Scholar
  49. Press, W.H., B.P. Flannery, S.A. Teukolsky & W.T. Vetterling, 1990. Numerical Recipes in Pascal. Cambridge: Cambridge University Press.Google Scholar
  50. Sniegowski, P.D. & R.E. Lenski, 1995. Mutation and adaptation: the directed mutation controversy in evolutionary perspective. Ann. Rev. Ecol. Syst. 26: 553-578.CrossRefGoogle Scholar
  51. Sniegowski, P.D., P.J. Gerrish & R.E. Lenski, 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703-705.PubMedCrossRefGoogle Scholar
  52. Sokal, R.R. & F.J. Rohlf, 1981. Biometry, 2nd edition. New York: W. H. Freeman.Google Scholar
  53. Turelli, M., 1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor. Pop. Biol. 25: 138-193.CrossRefGoogle Scholar
  54. Wright, S., 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. Sixth. Intl. Congr. Genet. 1: 356-366.Google Scholar
  55. Wright, S., 1982. Character change, speciation, and the higher taxa. Evolution 36: 427-443.CrossRefGoogle Scholar
  56. Wright, S., 1988. Surfaces of selective value revisited. Amer. Nat. 131: 115-123.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Santiago F. Elena
    • 1
  • Lynette Ekunwe
    • 1
  • Neerja Hajela
    • 1
  • Shenandoah A. Oden
    • 1
  • Richard E. Lenski
    • 1
  1. 1.Center for Microbial EcologyMichigan State UniversityEast LansingUSA

Personalised recommendations