Skip to main content
Log in

Comparative molecular similarity indices analysis: CoMSIA

  • Published:
Perspectives in Drug Discovery and Design

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Klebe, G., Structural alignment of molecules, In Kubinyi, H. (Ed.) 3D QSAR in drug design, ESCOM, Leiden, The Netherlands, 1993, pp. 173-199.

    Google Scholar 

  2. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. and Tasumi, T., The protein data bank: a computer-based archival file for Macromolecular structures, J. Mol. Biol., 112 (1977) 535-542.

    PubMed  Google Scholar 

  3. Meyer, E. F., Botos, I., Scapozza, L. and Zhang, D., Backward binding and other structural surprises, Persp. Drug Discov. Design, 3 (1996) 168-195.

    Google Scholar 

  4. Böhm, H. J. and Klebe, G., What can we learn from molecular recognition in protein-ligand complexes for the design of new drugs?, Angew. Chem. Int. Ed. Engl., 35 (1996) 2588-2614.

    Google Scholar 

  5. Kearsley, S. K. and Smith, G. M., An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap, Tetrahed. Comput. Meth., 3 (1990) 615-633.

    Google Scholar 

  6. Klebe, G., Mietzner, T. and Weber, F., Different approaches toward an automatic alignment of drug molecules: Applications to sterol mimics, thrombin and thermolysin inhibitors, J. Comput.-Aided Mol. Design, 8 (1994) 751-778.

    Google Scholar 

  7. Klebe, G., Toward a more efficient handling of conformational flexibility in computer-assisted modeling of drug molecules, Persp. Drug Discov. Design, 3 (1995) 85-105.

    Google Scholar 

  8. Klebe, G., Mietzner, W. and Weber, F., Methodological developments and strategies for a fast flexible superposition of drug-size molecules(in preparation).

  9. Klebe, G. and Mietzner, T., A fast and efficient method to generate biologically relevant conformations, J. Comput.-Aided Mol. Design, 8 (1994) 583-606.

    Google Scholar 

  10. Cramer III, R. D., Patterson, D. E. and Bunce, J. D., Comparative molecular field analysis (CoMFA):1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110 (1988) 5959-5967.

    Google Scholar 

  11. Klebe, G. and Abraham, U., On the prediction of binding properties of drug molecules by comparative molecular field analysis, J. Med. Chem., 36 (1993) 70-80.

    PubMed  Google Scholar 

  12. Kellogg, G. E. and Abraham, D. J., KEY, LOCK, and LOCKSMITH: Complementary hydrophathic map predictions of drug structure from a known receptor-receptor structure from known drugs, J. Mol. Graph., 10 (1992) 212-217.

    Google Scholar 

  13. Kellog, G. E., Joshi, G. S. and Abraham, D. J., New tools for modeling and understanding hydrophobicity and hydrophobic interactions, Med. Chem. Res., 1 (1992) 444-453.

    Google Scholar 

  14. Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, J. Med. Chem., 28 (1985) 849-857.

    PubMed  Google Scholar 

  15. Thibaut, U., Applications of CoMFA and related 3D QSAR approaches, In Kubinyi, H. (Ed.), 3D QSAR in drug design, ESCOM, Leiden, The Netherlands, 1993, pp. 661-696.

    Google Scholar 

  16. SYBYL Molecular Modeling System (Version 5.40), Tripos Ass., 1699 Hanley Road, St. Louis, MO 63144, U. S. A.

  17. Cramer, R. D. III, DePriest, S. A., Patterson, D. E. and Hecht, P., The developing practice of comparative molecular field analysis, In Kubinyi, H. (Ed.), 3D QSAR in drug design, ESCOM, Leiden, The Netherlands, 1993, pp. 443-485.

    Google Scholar 

  18. Folkers, G., Merz, A. and Rognan, D., CoMFA: Scope and limitations, In Kubinyi, H. (Ed.) 3D QSAR in drug design, ESCOM, Leiden, The Netherlands, 1993, pp. 583-618.

    Google Scholar 

  19. Klebe, G., Abraham, U. and Mietzner, T., Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, J. Med. Chem., 37 (1994) 4130-4146.

    Google Scholar 

  20. Stahle, L. and Wold, S., Multivariate data analysis and experimental design in biomedical research, Prog. Med. Chem., 25 (1988) 292-334.

    Google Scholar 

  21. Klebe, G. and Abraham, U., results obtained with proprietory datasets.

  22. Good, A. C., So, S.-S. and Richards, W. G., Structure-activity relationships from molecular similarity matrices, J. Med. Chem., 36 (1993) 433-438.

    PubMed  Google Scholar 

  23. DePriest, S. A., Mayer, D., Naylor, C. B., Marshall, G. R., 3D QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparison of CoMFA models based on deduced and experimentally determined active site geometries, J. Am. Chem. Soc., 115 (1993) 5372-5384.

    Google Scholar 

  24. Matthews, B. W., Structural basis of the action of thermolysin and related zinc peptidases, Acc. Chem. Res., 21 (1988) 33-340.

    Google Scholar 

  25. Klebe, G. and Abraham, A. Comparative Molecular Similarity Index Analysis (CoMSIA) to study hydrogen bonding properties and to score combinatorial libraries(submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klebe, G. Comparative molecular similarity indices analysis: CoMSIA. Perspectives in Drug Discovery and Design 12, 87–104 (1998). https://doi.org/10.1023/A:1017025803403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017025803403

Keywords

Navigation