Skip to main content
Log in

Evolution by nearly-neutral mutations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Genetic systems are complex and interact at various levels; among amino acids or nucleotide sites, among gene products, and among regulatory regions and proteins. Patterns of synonymous and nonsynonymous substitutions of mammalian genes indicate that nonsynonymous substitutions are nearly neutral, coming from interactions among amino acids. As an interactive system, the NK model of Kauffman was analysed. This model assumes that each amino acid makes a fitness contribution that depends upon the amino acid and upon K other amino acids among the N that make the protein. Through simulations, it was found that there are numerous nearly-neutral mutations in this model, and that evolution is rapid in small populations and slow in large ones. The system moves on the rugged fitness landscape by mutation, random genetic drift and selection. Small populations have more chance to attain novel genetic systems than large ones because of larger effects of random drift, but the chance of extinction becomes greater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akashi, H., 1995. Inferring weak selection from patterns of polymorphism and divergence at ‘silent’ sites in Drosophila DNA. Genetics 139: 1067-1076.

    PubMed  CAS  Google Scholar 

  • Araki, H., & H. Tachida, 1997. Bottleneck effect on evolutionary rate in the nearly neutral mutation model. Genetics 147: 907-914.

    PubMed  CAS  Google Scholar 

  • Ballard, J.W.O. & M. Kreitman, 1994. Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138: 757-772.

    PubMed  CAS  Google Scholar 

  • Bernardi, G., 1989. The isochore organization of the human genome. Ann. Rev. Genet. 23: 637-661.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G., 1995. The human genome: organization and evolutionary history. Ann. Rev. Genet. 29: 445-476.

    Article  PubMed  CAS  Google Scholar 

  • Bulmer, M., 1991. The selectionmutationdrift theory of synonymous codon usage. Genetics 129: 897-907.

    PubMed  CAS  Google Scholar 

  • Chao, L. & D.E. Carr, 1993. Themolecular clock and the relationship between population size and generation time. Evolution 47: 688-690.

    Article  Google Scholar 

  • Eanes, W.F., M. Kirchner & J. Yoon, 1993. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc. Natl. Acad. Sci., USA 90: 7475-7479.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, K., 1995. Human genome organization. Current Opinion in Genetics and Development 5: 315-322.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J.H., 1984. Molecular evolution over the mutational landscape. Evolution 38: 1116-1129.

    Article  CAS  Google Scholar 

  • Gillespie, J.H., 1991. The Causes of Molecular Evolution. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Gould, S.J. & N. Eldredge, 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3: 115-151.

    Google Scholar 

  • Holmquist, G., 1992. Reviewarticle: Chromosome bands, their chromatin flavors and their functional features. Am. J. Hum. Genet. 51: 17-37.

    PubMed  CAS  Google Scholar 

  • Ina, Y., 1995. New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J. Mol. Evol. 40: 190-226.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, S.A., 1993. The Origins of Order. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315-1322.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1979. Amodel of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci., USA 76: 3440-3444.

    Article  PubMed  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Kondrashov, A., 1995. Contamination of the genome by very slightly deleterious mutations: Why have we not died 100 times over? J. Theor. Biol. 175: 583-594.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H., 1979. Maintenance of genetic variability under the pressure of neutral and deleterious mutations in a finite population. Genetics 92: 647-667.

    PubMed  CAS  Google Scholar 

  • Long, M. & C.H. Langley, 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91-95.

    PubMed  CAS  Google Scholar 

  • McDonald, J.H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652-654.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, N.T., H. Innan & R. Terauchi, 1996. Intraand interspecific variation of alcohol dehydrogenase locus region in wild plants Arabis gemmifera and Arabidopsis thaliana. Mol. Biol. Evol. 13: 433-436.

    PubMed  CAS  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1-19.

    PubMed  CAS  Google Scholar 

  • Nachman, M.W., S.N. Boyer & C.F. Aquadro, 1994. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc. Natl. Acad. Sci., USA 91: 6364-6368.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M.W., W.M. Brown, M. Stoneking & C.F. Aquadro, 1996. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 192: 953-963.

    Google Scholar 

  • Ohta, T., 1973. Slightly deleteriousmutant substitutions in evolution. Nature 246: 96-98.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., 1977. Extension to the neutral mutation random drift hypothesis, pp. 148-167. Kimura M (ed) Molecular Evolution and Polymorphism, edited by M. Kimura. National Institute of Genetics, Mishima.

    Google Scholar 

  • Ohta, T., 1992a. The nearly neutral theory of molecular evolution. Ann. Rev. Ecol. Syst. 23: 263-286.

    Article  Google Scholar 

  • Ohta, T., 1992b. The meaning of natural selection revisited at the molecular level. Trends in Ecol. Evol. 7: 311-312.

    Article  Google Scholar 

  • Ohta, T., 1995. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J. Mol. Evol. 40: 56-63.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., 1997. Role of random genetic drift in the evolution of interactive systems. J. Mol. Evol. 44: S9-S14.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T. & H. Tachida, 1990. Theoretical study of near neutrality. I. Heterozygosity and rate of mutant substitution. Genetics 126: 219-229.

    PubMed  CAS  Google Scholar 

  • Rand, D.M. & L.M. Kann, 1996. Excess amino acid polymorphism in mitochondrial DNA: Contracts among genes from Drosophila, mice, and humans. Mol. Biol. Evol. 13: 735-748.

    PubMed  CAS  Google Scholar 

  • Sharp, P. &W.-H. Li, 1989. On the rate of DNA sequence evolution in Drosophila. J. Mol. Evol. 28: 398-402.

    PubMed  CAS  Google Scholar 

  • Tachida, H., 1991. A study on a nearly neutral mutation model in finite populations. Genetics 128: 183-192.

    PubMed  CAS  Google Scholar 

  • Tachida, H., 1996. Effects of the shape of distribution of mutant effect in nearly neutral mutation models. Jour. Genet. 75: 33-48.

    Article  Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.

    PubMed  CAS  Google Scholar 

  • Throckmorton, L.H., 1975. The phylogeny, ecology and geography of Drosophila, pp. 421-469. King RC (ed) Handbook of Genetics vol. 3, edited by R.C. King. Plenum Press, New York.

    Google Scholar 

  • Wright, S., 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics, 1: 356-366.

    Google Scholar 

  • Wright, S., 1982. The shifting balance theory and macroevolution. Annual Review of Genetics 16: 1-19.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., 1997. Neutral and nonneutral mutations: the creative mix in gene interactive systems. J. Mol. Evol. 44: S2-S8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, T. Evolution by nearly-neutral mutations. Genetica 102, 83–90 (1998). https://doi.org/10.1023/A:1017007513825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017007513825

Navigation