Skip to main content
Log in

The effect of light on growth and agar content of Gelidium pulchellum (Gelidiaceae, Rhodophyta) in culture

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Investigation of light conditions suitable for cultivation of Gelidium pulchellum (Turner) Kurtz was performed under controlled laboratory conditions at 20 °C and in the range of irradiance of 10–430 μmol photons m−2 s−1. Growth, measured as fresh weight increment, increased with irradiance up to 130 μmol m−2 s−1 and no significant photoinhibition was observed up to 430 μmol m−2 s−1. Maximum growth rate (10.0% day−1) was obtained at 130–240 μmol m−2 s−1 under continuous light and aeration. The effect of irradiance on agar yield and quality was assessed. Agar yield varied from 31 to 38.6% of the algal dry weight, and variation was not related to irradiance. However, the yield of agar molecules soluble at 95 °C increased with increasing irradiance. A similar trend was found for sulphate content in both series o f extracts, at 95 and 121 °C. On the contrary, the molecular weight and the degree of methylation of agar molecules in the 95 °C extracts decreased with increasing light intensity. As a consequence of the variations in sulphate content, molecular weight and molecular weight distribution, the gel strength was considerably lower at high light intensity. Starch content varied from 0.9 to 7.7% of the algal dry weight, and apparently was not related with irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armisén, R., 1995. World-wide use and importance of Gracilaria. J. appl. Phycol. 7: 231–243.

    Google Scholar 

  • Armisén, R. & F. Galatas, 1987. Production, properties and uses of agar. In McHugh, D.J. (ed.), Production and Utilisation of Products from Commercial Seaweeds. FAO Fish. Tech. Pap. 288: 1–57.

  • Asare, S. O., 1980. Seasonal changes in sulphate and 3,6-anhydrogalactose content in phycocolloids from two red algae. Bot. mar. 23: 595–598.

    Google Scholar 

  • Beck, E. & P. Ziegler, 1989. Biosynthesis and degradation of starch in higher plants. Ann. Rev. P. Physiol. Plant Mol. Biol. 40: 95–117.

    Google Scholar 

  • Bird, K. T., 1988. Agar production and quality from Gracilariasp.strain G-16: Effects of environmental factors. Bot. mar. 31: 33–39.

    Google Scholar 

  • Bird, K. T., M. D. Hanisak & J. Ryther, 1981. Chemical quality and production of agar extracted from Gracilaria tikvahiaegrown in different nitrogen enrichment conditions. Bot. mar. 24: 441–444.

    Google Scholar 

  • Bird, K. T., K. Pendoley & F. Koehn, 1989. Variabilty in agar gel behaviour and chemistry as affected by algal growth under different environmental conditions. In Crescenzi, V., I. C. M. Dea, S. Paoletti, S. S. Stivala & I. W. Sutherland (eds), Biomedical and Biotechnological Advances in Industrial Polysaccharides. Gordon & Breach Science Publishers, New York: 365–374.

    Google Scholar 

  • Chiles, T. C., K. T. Bird & F. E. Koehn, 1989. Influence of nitrogen availability on agar-polysaccharides from Gracilaria verrucosastrain G-16: structural analysis by NMR spectroscopy. J. appl. Phycol. 1: 53–58.

    Google Scholar 

  • Christeller, J. T. & W. A. Laing, 1989. The effect of environment on the agar yield and gel characteristics of Gracilaria sordidaNelson (Rodophyta). Bot. mar. 32: 447–455.

    Google Scholar 

  • Cote, G. L. & M. D. Hanisak, 1986. Production and properties of native agars from Gracilaria tikvahiaeand other red algae. Bot. mar. 29: 359–366.

    Google Scholar 

  • Craigie, J. S., 1990. Cell walls. In Cole, K.M. & R.G. Sheath (eds), Biology of the Red Algae, Cambridge University Press, Cambridge: 221–257.

    Google Scholar 

  • Craigie J. S. & A. Jurgens, 1989. Structure of agars from Gracilaria tikvahiaeRhodophyta: location of 4-O-methyl-L-galactose and sulphate. Carbohydr. Polymers 11: 265–278.

    Google Scholar 

  • Craigie, J. S., J. McLachlan & R. D. Tocher, 1967. Some neutral constituent of Rhodophyceae with special reference to the occurrence of the floridosides. Can. J. Bot. 46: 605–611.

    Google Scholar 

  • Dea, C. M. & D. A. Rees, 1987. Affinity interaction between agarose and β-1,4-glycans: a model for polysaccharides associations in algal cell walls. Carbohydr. Polymers 7: 183–224.

    Google Scholar 

  • Ekman, P. & M. Pedersén, 1990. The influence of photon irradiance, day length, dark treatment, temperature, and growth rate on the agar composition of Gracilaria sordidaW. Nelson and Gracilaria verrucosa(Hudson) Papenfuss (Gigartinales, Rhodophyta). Bot. mar. 33: 483–495.

    Google Scholar 

  • Fei, X. G. & L. J. Huang, 1991. General principles of on-shore cultivation of seaweeds: effects of light on reproduction. Hydrobiologia 221: 125–135.

    Google Scholar 

  • Fredriksen, S. & J. Rueness, 1989. Culture studies of Gelidium latifolium(Grev.) Born. et Thur. (Rhodophyta) from Norway. Growth and nitrogen storage in response to varying photon flux density, temperature and nitrogen availability. Bot. mar. 32: 539–546.

    Google Scholar 

  • Fredriksen, S., J. M. Rico & J. Rueness, 1993. Comparison of Gelidium latifolium(Grev.) Born. et Thur. (Gelidiales, Rhodophyta) isolates from Spain and Norway. J. appl. Phycol. 5: 117–12.

    Google Scholar 

  • Friedlander, M. & I. Levy, 1995. Cultivation of Gracilariain outdoor tanks and ponds. J. appl. Phycol. 7: 315–324.

    Google Scholar 

  • Friedlander, M., R. Shalev, T. Ganor, S. Strimling, A. Ben-Amotz, H. Klar & Y. Wax, 1987. Seasonal fluctuations of growth rate and chemical composition of Gracilariacf. confertain outdoor culture in Israel. Hydrobiologia 151/152: 501–507.

    Google Scholar 

  • Hemmingson J. A., R. H. Furneaux & V. H. Murray-Brown, 1996. Biosynthesis of agar polysaccharides in Gracilaria chilensisBird, McLachlan et Oliveira. Carbohydr. Res. 287: 101–115.

    Google Scholar 

  • Izumi, K., 1973. Structural analysis of agar-type polysaccharides by NMR spectroscopy. Biochim. Biophys. Acta 320: 311–317.

    Google Scholar 

  • Ji, M., M. Lahaye & W. Yaphe, 1988. Structural studies on agar fractions extracted sequentially fromChinese red seaweeds: Gracilaria sjeostedtii, G. textoriiand G. salicorniausing 13C-NMR and IR spectroscopy. Chin. J. Oceanol. Limnol. 6: 87–103.

    Google Scholar 

  • Knutsen, S. H. & H. Grasdalen, 1987. Characterisation of watersoluble polysaccharides from norwegian Furcellaria lumbricalis(Huds.) Lamour. (Gigartinales, Rhodophyceae) by IR and NMR spectroscopy. Bot mar. 30: 497–505.

    Google Scholar 

  • Knutsen, S. H., E. Murano, M. D'Amato, R. Toffanin, R. Rizzo & S. Paoletti, 1995. Modified procedure for extraction and analysis of carrageenan applied to the red alga Hypnea musciformis. J. appl. Phycol. 7: 565–576.

    Google Scholar 

  • Lahaye, M. & W. Yaphe, 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosaagar (Gracilariaceae, Rhodophyta). Carbohydr. Polymers 8: 285–301.

    Google Scholar 

  • Lahaye, M., C. Rochas & W. Yaphe, 1985. 13C NMR analysis of sulphated and desulphated agar type polysaccharides. Carbohydr. Res. 143: 240–245.

    Google Scholar 

  • Lahaye, M., C. Rochas & W. Yaphe, 1986. A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilariaspp. (Gracilariaceae, Rhodophyta). Can. J. Bot. 64: 579–585.

    Google Scholar 

  • Lahaye, M., J. F. Revol, C. Rochas, J. McLachlan & W. Yaphe, 1988. The chemical structure of Gracilaria crassissima(P. et H. Crouan in Schramm et Mazé) P. et H. Crouan in Schramm et Mazé and G. tikvahiaeMcLachlan (Gigartinales, Rhodophyta) cell-wall polysaccharides. Bot. mar. 31: 491–501.

    Google Scholar 

  • Lewis, R. & D. Hanisak, 1996. Effects of phosphate and nitrate supply on productivity, agar content and properties of Gracilariastrain G-16S. J. appl. Phycol. 8:41–49.

    Google Scholar 

  • Macler, B.A., 1986. Regulation of carbon flow by nitrogen and light in the red alga Gelidium coulteri. Plant Physiol. 82: 136–141.

    Google Scholar 

  • Macler, B. A. & J. A. West, 1987. Life history and physiology of the red alga Gelidium coulteri, in unialgal culture. Aquaculture 61: 281–293.

    Google Scholar 

  • Macler, B. A. & J. R. Zupan, 1991. Physiological basis for the cultivation of the Gelidiaceae. Hydrobiologia 221: 83–90.

    Google Scholar 

  • Martinsen, A., Skjåk-Bræk, G., Smisdrød O., Zanetti, F. & S. Paoletti, 1991. Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr. Polymers 15: 171–193.

    Google Scholar 

  • Mouradi-Givernaud, A., T. Givernaud, H. Morvan & J. Cosson, 1992. Agar from Gelidium latifolium(Gelidiales, Rhodophyta), biochemical composition and seasonal variations. Bot. mar. 35: 153–159.

    Google Scholar 

  • Murano, E., 1995a. Agar from Gracilariaspecies. Ph.D. Thesis, University of Portsmouth, Portsmouth, England.

    Google Scholar 

  • Murano, E., 1995b. Chemical structure and quality of agars from Gracilaria. J. appl. Phycol. 7: 245–254.

    Google Scholar 

  • Murano, E., R. Toffanin, F. Zanetti, S. H. Knutsen, S. Paoletti & R. Rizzo, 1992. Chemical and macromolecular characterisation of agars polymers from Gracilaria dura(C. Agardh) J. Agardh (Gracilariaceae, Rhodophyta). Carbohydr. Polymers 18: 171–178.

    Google Scholar 

  • Nicolaisen, F. M., I. Meyland & K. Schaumburg, 1980. 13C NMR spectra at 69.9 Mhz of agarose solutions and partly 6-O-methylated agarose at 95 °C. Acta Chem. Scand. Ser. B 34: 103–107.

    Google Scholar 

  • Oza, R.M., 1978. Studies on Indian Gracilaria. IV. Seasonal variations in agar and gel strength of Gracilaria corticataJ. Ag. occuring on the coast of Veraval. Bot. mar. 21: 165–167.

    Google Scholar 

  • Patwary, U. M. & J. P. van der Meer, 1997. Construction of backcrossed Gelidiummale-sterile and male-fertile lines and their growth comparison. J. appl. Phycol. 8: 483–486.

    Google Scholar 

  • Preiss, J. & C. Levi, 1980. Starch biosynthesis and degradation. In Preiss, J. (ed.), The Biochemistry of Plants, Vol. 3, Academic Press, San Diego: 371–423.

    Google Scholar 

  • Rees, D. A., 1969. Structure, conformation, mechanisms in the formation of polysaccharides and networks. Adv. Carbohydr. Chem. Biochem. 24: 267–332.

    Google Scholar 

  • Rotem, A., N. Roth-Bejerano & S. M. Arad, 1986. Effect of controlled environmental conditions on starch and agar content of Gracilariasp. (Rhodophyceae). J. Phycol. 22: 117–121.

    Google Scholar 

  • Santelices, B., 1978. The morphological variation of Pterocladia caerulescens(Gelidiales, Rhodophyta) in Hawaii. Phycologia 17: 53–60.

    Google Scholar 

  • Santelices, B., 1988. Synopsis of biological data on the seaweed genera Gelidiumand Pterocladia(Rhodophyta). FAO Fisheries Synopsis 145: 1–55.

    Google Scholar 

  • Santelices, B., 1991. Production ecology of Gelidium. Hydrobiologia 221: 31–44.

    Google Scholar 

  • Santelices, B. & M. S. Doty, 1989. A review of Gracilariafarming. Aquaculture 78: 95–133.

    Google Scholar 

  • Seoane-Camba, J., 1964. L'effect de l'intensité lumineuse et de la température sur la concentration de la chlorophylle dans quelques algues marines bentiques. C. r. hebd. Séanc. Acad. Sci. Paris 259: 1432–1435.

    Google Scholar 

  • Seoane-Camba, J., 1965. Estudios sobre las algas bentonicas en la costa sur de la Peninsula Iberica. Invest. Pesq. Barc. 29: 3–216.

    Google Scholar 

  • Silvestri, L. J., R. E. Hurst, L. Simpson & J. M. Settin, 1982. Analysis of sulphate in complex carbohydrates. Anal. Biochem. 123: 303–309.

    Google Scholar 

  • Sousa-Pinto, I., 1994. Ecophysiology and growth of Gelidium robustumin culture. PhD Dissertation, University of California, Santa Barbara CA (USA).

    Google Scholar 

  • Sousa-Pinto, I., R. Lewis & M. Polne-Fuller, 1996. The effects of phosphate concentration on growth and agar content of Gelidium robustum(Gelideaceae, Rhodophyta) in culture. Hydrobiologia 326/327: 437–443.

    Google Scholar 

  • Torres, M., F. X. Niell & P. Algarra, 1991. Photosynthesis of Gelidium sesquipedale: effects of temperature and light on pigment concentration, C/N ratio and cell-wall polysaccharides. Hydrobiologia 221: 77–82.

    Google Scholar 

  • Usov, A.I., E. G. Ivanova & A. S. Shashkov, 1983. Polysaccharides of algae. XXXIII. Isolation and 13C-NMR spectral study of some 338 new gel-forming polysaccharides from Japan sea red seaweeds. Bot. mar. 26: 285–294.

    Google Scholar 

  • Usov, A. I., S. V. Yarotsky & A. S. Shashkov, 1980. 13C-NMR spectroscopy of red algal galactans. Biopolymers 19: 977–990.

    Google Scholar 

  • Watase, M. & K. Nishinari, 1983. Rheological properties of agarose gels with different molecular weights. Rheol. Acta 22: 580–587.

    Google Scholar 

  • Welti, D., 1977. Carrageenans. Part 12. The 300 MHz proton magnetic resonance spectra of methyl-D-galactopyranoside, methyl 3,6-anhydro-D-galactopyranoside, agarose, kappa-carrageenan and segments of iota-carrageenan and agarose sulphate. J. Chem. Res. (S): 312–313.

    Google Scholar 

  • Whyte, J. N. C., J. R. Englar, R. G. Saunders & J. C. Lindsay, 1981. Seasonal variations in the biomass, quantity and quality of agar, from the reproductive and vegetative stages of Gracilaria(verrucosatype). Bot. mar. 24: 493–501.

    Google Scholar 

  • Yu, S., 1992. Enzyme of floridean starch and floridoside degradation in red algae. Ph.D. Thesis, Uppsala University, Uppsala, Sweden.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa-Pinto, I., Murano, E., Coelho, S. et al. The effect of light on growth and agar content of Gelidium pulchellum (Gelidiaceae, Rhodophyta) in culture. Hydrobiologia 398, 329–338 (1999). https://doi.org/10.1023/A:1017002516473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017002516473

Navigation