Skip to main content
Log in

Quantum-Chemical Description of Charge Transfer Processes at the Metal/Solution Interface: Yesterday, Today, and Tomorrow

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Quantum-chemical approaches that have been used lately for computing Franck–Condon barriers for electron transfer reactions are analyzed. Attention is focused on the processes whose description goes beyond the linear response approximation, including redox reactions with the cleavage of chemical bonds. Various approaches that take into account the solvation effects are discussed. The role played by the cluster models of the electrode in the description of specific interaction of reactants and products with the electrode surface is emphasized. The influence the dynamics of the nearest coordination sphere of metal aquacomplexes has on the electron transfer rate are interpreted anew. Examples of calculation of the electron penetration probability are considered, and important qualitative effects associated with the dependence of this parameter on the reactant orientation and the electrode charge are analyzed. Urgent problems the quantum electrochemistry faces in the near future are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lyons, E.H., J. Electrochem. Soc., 1954, vol. 101, p. 363.

    Google Scholar 

  2. Lyons, E.H., J. Electrochem. Soc., 1954, vol. 101, p. 376.

    Google Scholar 

  3. Leban, M.A. and Hubbard, A.T., J. Electroanal. Chem., 1976, vol. 74, p. 253.

    Google Scholar 

  4. Shapnik, M.S. and Galeev, V.N., Elektrokhimiya, 1979, vol. 15, p. 827.

    Google Scholar 

  5. Marcus, R.A., J. Chem. Phys., 1956, vol. 24, p. 966.

    Google Scholar 

  6. Marcus, R.A., Can. J. Chem., 1959, vol. 37, p. 1551.

    Google Scholar 

  7. Marcus, R.A., J. Phys. Chem., 1956, vol. 67, p. 853.

    Google Scholar 

  8. Marcus, R.A., J. Chem. Phys., 1963, vol. 38, p. 1335.

    Google Scholar 

  9. Marcus, R.A., J. Chem. Phys., 1965, vol. 43, p. 679.

    Google Scholar 

  10. Dogonadze, R.R. and Kuznetsov, A.M., Elektrokhimiya, 1967, vol. 3, p. 1324.

    Google Scholar 

  11. Dogonadze, R.R. and Kuznetsov, A.M., Elektrokhimiya, 1971, vol. 7, p. 172.

    Google Scholar 

  12. Vorotyntsev, M.A., Dogonadze, R.R., and Kuznetsov, A.M., Elektrokhimiya, 1971, vol. 7, p. 306.

    Google Scholar 

  13. Kuznetsov, A.M., Charge Transfer in Physics, Chemistry and Biology: The Physical Mechanism of Elementary Processes and Introduction to the Theory, Berkshire: Gordon and Breach, 1995.

    Google Scholar 

  14. Schmickler, W., Interfacial Electrochemistry, New York: Oxford Univ. Press, 1996.

    Google Scholar 

  15. Kuznetsov, A.M., Stochastic and Dynamic Views of Chemical Reaction Kinetics in Solutions, Lausanne: Press Polytechniques et Universitaires Romandes, 1999.

    Google Scholar 

  16. Kuznetsov, A.M. and Ulstrup, J., Electron Transfer in Chemistry and Biology, Chichester: Wiley, 1999.

    Google Scholar 

  17. Stepanov, N.F. and Pupyshev, V.I., Kvantovaya mekhanika molekul i kvantovaya khimiya (Quantum Mechanics of Molecules and Quantum Chemistry), Moscow: Mosk. Gos. Univ., 1991.

    Google Scholar 

  18. Levine, I.N., Quantum Chemistry, Englewwod Cliffs: Prentice Hall, 1991.

    Google Scholar 

  19. Hehre, W.J., Radom, L., Schleyer, P.V.R., and Pople, J.A., Ab initio Molecular Orbital Theory, New York: Wiley, 1986.

    Google Scholar 

  20. Zerner, M., Reviews in Computational Chemistry II, Lipkowitz, K.B. and Boyd, D.B., Eds., New York: VCH, 1991.

    Google Scholar 

  21. Ziegler, T., Chem. Rev., 1991, vol. 91, p. 651.

    Google Scholar 

  22. Kohn, W., Becke, A.D., and Parr, R.G., J. Phys. Chem., 1996, vol. 100, p. 12974.

    Google Scholar 

  23. Perdew, J.P., Chevary, J.A., Vosko, S.H., et al., Phys. Rev. B: Condens. Matter, 1992, vol. 46, p. 6671.

    Google Scholar 

  24. Becke, A.D., J. Chem. Phys., 1992, vol. 98, p. 1372.

    Google Scholar 

  25. Nazmutdinov, R.R., Tsirlina, G.A., Kharkats, Yu.I., et al., J. Phys. Chem. B, 1998, vol. 102, p. 677.

    Google Scholar 

  26. Nazmutdinov, R.R., Pobelov, I.V., Tsirlina, G.A., and Petrii, O.A., J. Electroanal. Chem., 2000, vol. 491, p. 126.

    Google Scholar 

  27. Shapnik, M.S., Zinkicheva, T.T., Nazmutdinov, R.R., and Malyucheva, O.I., Zh. Neorg. Khim., 1999, vol. 44, p. 83.

    Google Scholar 

  28. Tsirlina, G.A., Titova, N.V., Nazmutdinov, R.R., and Petrii, O.A., Elektrokhimiya, 2001, vol. 37, p. 21.

    Google Scholar 

  29. Nazmutdinov, R.R., Abstracts of Papers, 7-i Mezhdunarodnyi Frumkinskii simpozium (7th Int. Frumkin Symp.), Moscow, 2000, part 1, p. 117.

  30. Car, R. and Parrinello, M., Phys. Rev. Lett., 1985, vol. 55, p. 2471.

    Google Scholar 

  31. Tuckerman, M.E., Ungar, P.J., von Rosenvinge, T., and Klein, M.L., J. Phys. Chem., 1996, vol. 100, p. 12878.

    Google Scholar 

  32. Halley, J.W., Mazzolo, A., Zhou, Y., and Price, D., J. Electroanal. Chem., 1998, vol. 450, p. 273.

    Google Scholar 

  33. Klessing, A., Labrenz, D., and van Santen, R.A., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 3229.

    Google Scholar 

  34. Nazmutdinov, R.R. and Shapnik, M.S., Electrochim. Acta, 1996, vol. 41, p. 2253.

    Google Scholar 

  35. Nazmutdinov, R.R., Zinkicheva, T.T., and Shapnik, M.S., Elektrokhimiya, 1999, vol. 35, p. 1249.

    Google Scholar 

  36. Böcker, J., Nazmutdinov, R.R., Spohr, E., and Heinzinger, K., Surf. Sci., 1995, vol. 335, p. 372.

    Google Scholar 

  37. Nazmutdinov, R.R., Probst, M., and Heinzinger, K., J. Electroanal. Chem., 1994, vol. 369, p. 227.

    Google Scholar 

  38. Nazmutdinov, R.R., Doctoral (Chem.) Dissertation, Kazan, 1998.

  39. Pobelov, I.V., Borzenko, M.I., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 2001, vol. 37, p. 270.

    Google Scholar 

  40. Nazmutdinov, R.R., Borisevich, S.V., and Tsirlina, G.A., Abstracts of Papers, I Vseross. konf. “Molekulyarnoe modelirovanie” (I All-Russia Conf. “Molecular Modeling”), Moscow, 1998, p. 16.

  41. Glukhov, D.V. and Nazmutdinov, R.R., Abstracts of Papers, 7-i Mezhdunarodnyi Frumkinskii simpozium (7th Int. Frumkin Symp.), Moscow, 2000, part 1, p. 102.

  42. Nazmutdinov, R.R. and Spohr, E., J. Phys. Chem., 1994, vol. 98, p. 5956.

    Google Scholar 

  43. Nazmutdinov, R.R., Shapnik, M.S., and Man'ko, L.Yu., Elektrokhimiya, 1996, vol. 32, p. 1098.

    Google Scholar 

  44. Kharkats, Yu.I., Elektrokhimiya, 1979, vol. 15, p. 246.

    Google Scholar 

  45. Kharkats, Yu.I., Nielsen, H., and Ulstrup, J., J. Electroanal. Chem., 1984, vol. 169, p. 47.

    Google Scholar 

  46. Borisevich, S.V., Kharkats, Yu.I., and Tsirlina, G.A., Elektrokhimiya, 1999, vol. 35, p. 753.

    Google Scholar 

  47. Tomassi, J. and Persico, M., Chem. Rev., 1994, vol. 94, p. 2027.

    Google Scholar 

  48. Cancés, E., Mennuchi, B., and Tomassi, J., J. Chem. Phys., 1997, vol. 107, p. 3032.

    Google Scholar 

  49. Barone, V. and Cossi, M., J. Phys. Chem., 1998, vol. 102, p. 1995.

    Google Scholar 

  50. Rega, N., Cossi, M., and Barone, V., Chem. Phys. Lett., 1998, vol. 293, p. 221.

    Google Scholar 

  51. Tsirlina, G.A., Petrii, O.A., Kharkats, Yu.I., and Kuznetsov, A.M., Elektrokhimiya, 1999, vol. 35, p. 1372.

    Google Scholar 

  52. Fawcett, W.R., Hromadova, M., Tsirlina, G.A., and Nazmutdinov, R.R., J. Electroanal. Chem. (in press).

  53. Tsirlina, G.A., Kharkats, Yu.I., Nazmutdinov, R.R., and Petrii, O.A., Elektrokhimiya, 1999, vol. 35, p. 23.

    Google Scholar 

  54. German, E.D. and Kuznetsov, A.M., Elektrokhimiya, 1990, vol. 26, p. 931.

    Google Scholar 

  55. Tsirlina, G.A., Kharkats, Yu.I., Nazmutdinov, R.R., and Petrii, O.A., J. Electroanal. Chem., 1998, vol. 450, p. 63.

    Google Scholar 

  56. Nazmutdinov, R.R., Zinkicheva, T.T., Tsirlina, G.A., and Shapnik, M.S., Abstracts of Papers, 7-i Mezhdunarodnyi Frumkinskii simpozium (7th Int. Frumkin Symp.), Moscow, 2000, part 1, p. 119.

  57. Nazmutdinov, R.R., Petrii, O.A., Tsirlina, G.A., et al., Abstracts of Papers, 51st Annual ISE Meeting, Warsaw, 2000, no. 345.

  58. Nazmutdinov, R.R., Zinkicheva, T.T., and Shapnik, M.S., Extended Abstracts, 2nd Baltic Conference on Electrochemistry, Palanga (Lithuania), p. 115.

  59. German, E.D., Kuznetsov, A.M., and Tikhomirov, V.A., J. Phys. Chem., 1995, vol. 99, p. 9095.

    Google Scholar 

  60. German, E.D., Kuznetsov, A.M., and Tikhomirov, V.A., J. Electroanal. Chem., 1997, vol. 420, p. 235.

    Google Scholar 

  61. German, E.D. and Kuznetsov, A.M., J. Phys. Chem., 1994, vol. 98, p. 6120.

    Google Scholar 

  62. Zusman, L.D., Usp. Khim., 1992, vol. 61, p. 29.

    Google Scholar 

  63. German, E.D. and Kuznetsov, A.M., Itogi Nauki Tekh., Ser.: Kinet. Katal., 1990, vol. 20, p. 1.

    Google Scholar 

  64. Sumi, H. and Marcus, R.A., J. Chem. Phys., 1986, vol. 84, p. 4894.

    Google Scholar 

  65. Nadler, W. and Marcus, R.A., J. Chem. Phys., 1987, vol. 86, p. 3906.

    Google Scholar 

  66. Sumi, H. and Asano, T., Electrochim. Acta, 1997, vol. 42, p. 2763.

    Google Scholar 

  67. Kravtsov, V.I., Ravnovesie i kinetika elektrodnykh reaktsii kompleksov metallov (The Equilibrium and Kinetics of Electrode Reactions Involving Metal Complexes), Leningrad: Khimiya, 1985.

    Google Scholar 

  68. Kravtsov, V.I., Ross. Khim. Zh., 1993, vol. 38, p. 46.

    Google Scholar 

  69. Zusman, L.D., Elektrokhimiya, 1988, vol. 24, p. 1212.

    Google Scholar 

  70. Saxton, Y.A., Proc. R. Soc. London, Ser. A, 1952, vol. 213, p. 473.

    Google Scholar 

  71. Connick, R.E. and Stover, E.D., J. Phys. Chem., 1961, vol. 65, p. 2075.

    Google Scholar 

  72. Swift, T.J. and Connick, R.E., J. Chem. Phys., 1962, vol. 37, p. 307.

    Google Scholar 

  73. Kozlovskii, M.T., Zebreva, A.I., and Gladyshev, V.P., Amal'gamy i ikh primenenie (The Amalgams and Their Application), Alma-Ata: Nauka, 1971.

    Google Scholar 

  74. Newton, M.D., J. Phys. Chem., 1988, vol. 92, p. 3049.

    Google Scholar 

  75. Newton, M.D., Chem. Rev., 1991, vol. 91, p. 767.

    Google Scholar 

  76. Newton, M.D., Perspectives in Photosynthesis, Jortner, J. and Pullman, D., Eds., Dordrecht: Kluwer, 1990, p. 157.

    Google Scholar 

  77. Han, S.U.M., Right, P., and Bockris, J.O'M., Elektrokhimiya, 1977, vol. 13, p. 914.

    Google Scholar 

  78. Kuznetsov, An.M., Elektrokhimiya, 1995, vol. 31, p. 1333.

    Google Scholar 

  79. Hsu, C.-P. and Marcus, R.A., J. Chem. Phys., 1997, vol. 106, p. 584.

    Google Scholar 

  80. Kornyshev, A.A., Kuznetsov, A.M., and Ulstrup, J., J. Phys. Chem., 1994, vol. 98, p. 3832.

    Google Scholar 

  81. Kornyshev, A.A., Kuznetsov, A.M., Nielsen, J.U., and Ulstrup, J., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 141.

    Google Scholar 

  82. Nazmutdinov, R.R., Tsirlina, G.A., Kharkats, Yu.I., et al., Electrochim. Acta, 2000, vol. 45, p. 3521.

    Google Scholar 

  83. Nazmutdinov, R.R., Tsirlina, G.A., Kharkats, Yu.I., et al., Extended Abstracts, 48th Annual ISE Meeting, Paris, 1997, p. 1026.

  84. Khrushcheva, M.L., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 1998, vol. 34, p. 355.

    Google Scholar 

  85. Buchachenko, A.L., Sagdeev, R.Z., and Salikhov, K.M., Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh (Magnetic and Spin Effects in Chemical Reactions), Novosibirsk: Nauka, 1978.

    Google Scholar 

  86. Schmickler, W., Chem. Phys. Lett., 1995, vol. 237, p. 152.

    Google Scholar 

  87. Schmickler, W., Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 1999, vol. 95, p. 117.

    Google Scholar 

  88. Koper, M.T.M. and Voth, G.A., J. Chem. Phys., 1998, vol. 109, p. 1991.

    Google Scholar 

  89. Faglioni, F., Claypool, C.L., Lewis, N.S., and Goddard, W.A., J. Phys. Chem. B, 1997, vol. 101, p. 5996.

    Google Scholar 

  90. Pecina, O., Schmickler, W., and Spohr, E., J. Electroanal. Chem., 1995, vol. 394, p. 29.

    Google Scholar 

  91. Pechina, O., Schmickler, W., and Spohr, E., J. Electroanal. Chem., 1996, vol. 405, p. 239.

    Google Scholar 

  92. Xia, X. and Berkowitz, M.L., Chem. Phys. Lett., 1994, vol. 227, p. 561.

    Google Scholar 

  93. Rose, D.A. and Benjamin, I., J. Chem. Phys., 1994, vol. 100, p. 3545.

    Google Scholar 

  94. Smith, B.B. and Halley, J.W., J. Chem. Phys., 1994, vol. 101, p. 10915.

    Google Scholar 

  95. Straus, J.B., Calhoun, A., and Voth, G.A., J. Chem. Phys., 1995, vol. 102, p. 529.

    Google Scholar 

  96. Calhoun, A. and Voth, G.A., J. Phys. Chem., 1996, vol. 100, p. 10746.

    Google Scholar 

  97. Fawcett, W.R. and Opallo, M., Angew. Chem., Int. Ed. Engl., 1994, vol. 33, p. 2131.

    Google Scholar 

  98. Weaver, M.J., Compr. Chem. Kinet., 1987, vol. 27, p. 1.

    Google Scholar 

  99. Frumkin, A.N., Z. Phys. Chem. A, 1933, vol. 164, p. 121.

    Google Scholar 

  100. Frumkin, A.N. and Petrii, O.A., Dokl. Akad. Nauk SSSR, 1962, vol. 146, p. 1121.

    Google Scholar 

  101. Frumkin, A.N. and Petrii, O.A., Dokl. Akad. Nauk SSSR, 1962, vol. 147, p. 418.

    Google Scholar 

  102. Petrii, O.A., Frumkin, A.N., and Nikolaeva-Fedorovich, N.V., Electrochim. Acta, 1963, vol. 8, p. 177.

    Google Scholar 

  103. Tsirlina, G.A., Kuznetsov, A.M., Petrii, O.A., and Kharkats, Yu.I., Elektrokhimiya, 1999, vol. 35, p. 938.

    Google Scholar 

  104. Iofa, Z., Acta Physicochim. URSS, 1939, vol. 10, p. 903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazmutdinov, R.R. Quantum-Chemical Description of Charge Transfer Processes at the Metal/Solution Interface: Yesterday, Today, and Tomorrow. Russian Journal of Electrochemistry 38, 111–122 (2002). https://doi.org/10.1023/A:1016853329468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016853329468

Keywords

Navigation