Skip to main content
Log in

Evaluating genetic resources of forest trees by means of life history traits – a Norwegian example

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Additive variation in adaptive traits is a prerequisite for selectionand adaptation to future environmental changes, but distribution of adaptivegenetic variability between and within populations is poorly known in mostforest trees. Owing to this deficiency, life history traits such as geographicrange, pollination vector and seed dispersal capability, which significantlyaffect gene flow and thus the distribution of genetic variability, were used toevaluate the genetic resources in 23 Norwegian native forest tree species. Basedon the combination of life history traits the species' genetic resourceswere classified either as viable, potentially vulnerable or vulnerable, assuminga decrease in within-population variability in this sequence. Twelve widelydistributed species with generally effective dispersal of pollen and seeds wereconsidered viable (Pinus sylvestris, Picea abies,Juniperus communis, Betula pubescens, B. pendula,Alnus incana, A. glutinosa, Salix caprea, Populustremula, Corylus avellana, Sorbus aucuparia, Prunus padus)and have as such no particular conservation needs. Effective seed dispersal of these species, asinferred from post-glacial migration rates, may be partly responsible for theirgenerally early post-glacial appearance, and may, in combination with the wideranges and relatively large evolutionary potential, indicate that viable speciesare best able to cope with climatic change. Among species with restricted rangesand more limited gene flow eight were considered potentially vulnerable (Quercuspetraea, Q. robur, Fraxinus excelsior, Acer platanoides,Taxus baccata, Ilexaquifolium, Fagus sylvatica, Ulmus glabra) and threewere considered vulnerable (Tiliacordata, Malus sylvestris, P. avium). Application of differentintensities of a multiple population breeding system (MPBS) is considered the most appropriate mode of conservinggenetic resources in these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacilieri R., Labbe T. and Kremer A. 1994. Intraspecific genetic structure in mixed populations of Quercus petraea (Matt.) Liebl. and Q.robur L. Heredity 73: 130–141.

    Google Scholar 

  • Baliuckas V., Ekberg I., Eriksson G. and Norell L. 1999. Genetic variation among and within populations of four Swedish hardwood species assessed in a nursery trial. Silvae Genetica 48: 17–25.

    Google Scholar 

  • Baliuckas V., Lagerström T. and Eriksson G. 2000. Within-population variation in juvenile growth rhythm and growth in Fraxinus excelsior L. and Prunus avium L. Forest Genetics 7: 193–202.

    Google Scholar 

  • Boshier D.H. 2000. Mating systems. In: Young A., Boshier D. and Boyle T. (eds), Forest Conservation Genetics. CABI Publishing, Wallingford, UK, pp. 63–79.

    Google Scholar 

  • Bradshaw H.W., Holmquist B.H., Cowling S.A. and Sykes M.T. 2000. The effect of climate change on the distribution and management of Picea abies in southern Scandinavia. Canadian Journal of Forest Research 30: 1992–1998.

    Google Scholar 

  • Crawford R.M.M. 1989. Studies in Plant Survival. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Eriksson G. 1996. Evolutionary genetics and conservation of forest genetic resources. In: Turok J., Eriksson G., Kleinschmit J. and Canger S. (eds), Noble Hardwoods Network. Report of the first meeting, Escherode, Germany, 24–27 March 1996. International Plant Genetic Resources Institute, Rome, Italy, pp. 159–167.

    Google Scholar 

  • Eriksson G. 1998a. Evolutionary forces influencing variation among populations of Pinus sylvestris. Silva Fennica 32: 173–184.

    Google Scholar 

  • Eriksson G. 1998b. Sampling for genetic resources populations in the absence of genetic knowledge. In: Turok J., Collin E., Demesure B., Eriksson G., Kleinschmit J., Rusanen M. et al. (eds), Noble Hardwoods Network. Report of the second meeting, Lourizàn, Spain, 22–25 March 1997. International Plant Genetic Resources Institute, Rome, Italy, pp. 48–50.

    Google Scholar 

  • Eriksson G. 1999. Global warming and gene conservation in Noble Hardwoods. In: Turok J., Jensen J., Palmberg-Lerche Ch., Rusanen M., Russell K., de Vries S. et al. (eds), Noble Hardwoods Network. Report of the third meeting, Sagadi, Estonia, 13–16 June 1998. International Plant Genetic Resources Institute, Rome, Italy, pp. 98–112.

    Google Scholar 

  • Eriksson G. 2000. To survive and not survive global warming? In: Turok J. and Geburek T. (eds), International collaboration on forest genetic resources: the role of Europe, Proceedings of the Second EUFORGEN Steering Committee Meeting, Vienna, Austria, 26–29 November 1998. International Plant Genetic Resources Institute, Rome, Italy, pp. 36–43.

    Google Scholar 

  • Eriksson G. 2001. Conservation of noble hardwoods in Europe. Canadian Journal of Forest Research 31: 557–587.

    Google Scholar 

  • Eriksson G. and Jonsson A. 1986. A review of genetics of Betula. Scandinavian Journal of Forest Research 1: 421–434.

    Google Scholar 

  • Eriksson G., Namkoong G. and Roberds J.H. 1993. Dynamic gene conservation for uncertain futures. Forest Ecology and Management 62: 15–37.

    Google Scholar 

  • Frison E.F., Lefevre F., de Vries S. and Turok J. 1995. Populus nigra Network. Report of the first meeting, Izmit, 3–5 October 1994. International Plant Genetic Resources Institute, Rome, Italy.

    Google Scholar 

  • Govindaraju D.R. 1988. Relationship between dispersal ability and levels of gene flow in plants. Oikos 52: 31–35.

    Google Scholar 

  • Hamrick J.L. and Godt M.J.W. 1990. Allozyme Diversity in Plants. In: Brown H.D., Clegg M.T., Kahler A.L. and Weir B.S. (eds), Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, Massachusetts, pp. 43–63.

    Google Scholar 

  • Hamrick J.L. and Godt M.J.W. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 351: 1291–1298.

    Google Scholar 

  • Hamrick J.L. and Nason J.D. 1996. Consequences of dispersal in plants. In: Rhodes O.E., Chesser R.K. and Smith M.H. (eds), Population Dynamics in Space and Time. The University of Chicago Press, Chicago, Illinois, pp. 203–236.

    Google Scholar 

  • Hamrick J.L. and Nason J.D. 2000. Gene flow in forest trees. In: Young A., Boshier D. and Boyle T. (eds), Forest Conservation Genetics. CABI Publishing, Wallingford, UK, pp. 81–89.

    Google Scholar 

  • Hamrick J.L., Godt M.J.W. and Sherman-Broyles S. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124.

    Google Scholar 

  • Hamrick J.L., Murawski D.A. and Nason J.D. 1993. The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107/ 108: 281–297.

    Google Scholar 

  • Heuertz M., Hausman J.-F., Tsvetkov I., Frascaria-Lacoste N. and Vekemans X. 2001. Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinius excelsior L.). Molecular Ecology 10: 1615–1623.

    Google Scholar 

  • Hewitt G.M. 1999. Post-glacial re-colonisation of European biota. Biological Journal of the Linnean Society 68: 87–112.

    Google Scholar 

  • Holsinger K.E. and Gottlieb 1991. Conservation of rare and vulnerable plants. In: Falk D.A. and Holsinger K.E. (eds), Genetics and Conservation of Rare Plants. Oxford University Press, Oxford, UK, pp. 195–223.

    Google Scholar 

  • Hultén E. 1971. Atlas of the Distribution of Vascular Plants in Northwestern Europe. Generalstabens litagrafiske anstalts forlag, Stöckholm, Sweden.

    Google Scholar 

  • Hultén E. and Fries M. 1986. Atlas of North EuropeanVascular Plants North of the Tropic of Cancer.Vol. I–III. Koeltz Scientific Books, Konigstein, Germany.

    Google Scholar 

  • Huntley B. 1991. How plants respond to climate change: migration rates, individualism and the consequences for plant communities. Annales of Botany 67: 15–22.

    Google Scholar 

  • Huntley B. and Birks H.J.B. 1983. An Atlas of Past and Present Pollen maps for Europe: 0–13000 BP. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • IPCC 1995. Second Assessment Report: Climate Change. Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.

    Google Scholar 

  • Johnsen Ø. and Østreng G. 1994. Effects of plus tree selection and seed orchard environment on progenies of Picea abies. Canadian Journal of Forest Research 24: 32–38.

    Google Scholar 

  • Karhu A., Hurme P., Karjalainen M., Korvonen P., Karkkainen P., Neale D. et al. 1996. Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theoretic and Applied Genetics 93: 215–221.

    Google Scholar 

  • Ketner P. 1990. Impact of climate change on flora and vegetation in western Europe with special emphasis on the Netherlands. In: Holten J.I. (ed.), Effects of Climate Change on Terrestrial Ecosystems. Norsk institutt for naturforskning, Notat 4, Trondheim, Norway, pp. 47–66.

    Google Scholar 

  • Kremer A. and Zanetto A. 1997. Geographic structure of gene diversity in Quercus petraea (Matt.) Liebl. II: multilocus patterns of variation. Heredity 78: 476–489.

    Google Scholar 

  • Kullman L. 1995. New and firm evidence for MidHolocene appearance of Picea abies in the Scandes Mountains, Sweden. Journal of Ecology 83: 439–447.

    Google Scholar 

  • Kullman L. 1996. Norway spruce present in the Scandes Mountains, Sweden at 8000 BP: new light on Holocene tree spread. Global Ecology and Biogeography Letters 5: 94–101.

    Google Scholar 

  • Kullman L. 1998. Non-analogous tree flora in the Scandes Mountains, Sweden, during the early Holocene — macrofossil evidence of rapid geographic spread and response to paleoclimate. Boreas 27: 153–161.

    Google Scholar 

  • Lang G. 1994. Quartäre Vegetationsgeschichte Europas — Methoden und Ergebnisse. Gustav Fischer Verlag, Jena, Germany.

  • Lindgren D., Paule L., Xihuan S., Yazdani R., Segerstrom U., Wallin J.-E. et al. 1995. Can viable pollen carry Scots pine genes over long distances? Grana 34: 64–69.

    Google Scholar 

  • Michaud H., Toumi L., Lumaret R., Li T.X., Romane F. and Digiusto F. 1995. Effect of geographic discontinuity on genetic variation in Quercus ilex L. (Holm oak) – evidence from enzyme polymorphism. Heredity 74: 590–606.

    Google Scholar 

  • Moe D. 1970. The post-glacial migration of Picea abies into Fennoscandia. Botaniske Notiser 123: 61–66.

    Google Scholar 

  • Moe D., Vorren K.-D., Alm T., Fimreite S., Mørkved B., Nilssen E. et al. 1996. Norway. In: Berglund B.E., Birks H.J.B., Raska-Jasiewiczowa M. and Wright H.E. (eds), Paleoecological Events During the Last 15000 Years. Regional Synthesis of Paleoecological Studies of Lakes and Mires in Europe. Wiley, Weinheim, Germany, pp. 153–213.

    Google Scholar 

  • Mosseler A., Egger K.N. and Hughes G.A. 1992. Low levels of genetic diversity in red pine confirmed by random amplified polymorphism DNA markers. Canadian Journal of Forest Research 22: 1332– 1337.

    Google Scholar 

  • Möller-Stark G., Baradat P. and Bergmann F. 1992. Genetic variation within European tree species. New Forests 6: 23–47.

    Google Scholar 

  • Myking T. and Skrøppa T. 2001. Bevaring av genetiske ressurser hos norske skogstrær [Conservation of genetic resources in Norwegian forest trees] (in Norwegian with English abstract). Aktuelt fra skogforskningen 2: 1–44.

    Google Scholar 

  • Namkoong G. 1984. A control concept of gene conservation. Silvae Genetica 33: 160–163.

    Google Scholar 

  • Nason J.D. and Hamrick J.L. 1997. Reproductive and genetic consequences of forest fragmentation: two case studies of neutropical canopy trees. Journal of Heredity 88: 264–276.

    Google Scholar 

  • NIJOS 1994. Statistikk over skogforhold i Norge [Statistics of Forest Conditions and Resources in Norway] (in Norwegian with English abstract). Norwegian Institute of Land Inventory, Ås, Norway.

    Google Scholar 

  • Oldfield S., Lusty C. and MacKinven A. 1998. TheWorld List of Threatened trees. World Conservation Press, WCMC, Cambridge, UK.

    Google Scholar 

  • Persson B. and Ståhl E.G. 1990. Survival and yield of Pinus sylvestris L. as related to provenance transfer and spacing at high altitudes in northern Sweden. Scandinavian Journal of Forest Research 5: 381–395.

    Google Scholar 

  • Peters R.L. 1990. Effects of global warming on forests. Forest Ecology and Management 35: 13–33.

    Google Scholar 

  • Peters R.L. 1991. Consequences of global warming for biological diversity. In: Wyman R.L. (ed.), Global Climate Change and Life on Earth. Chapman & Hall, New York, pp. 99–118.

    Google Scholar 

  • Pigott C.D. and Huntley J.P. 1981. Factors controlling the distribution of Tilia cordata at the northern limits of its geographic range. III. Nature and causes of seed sterility. New Phytologist 87: 817–839.

    Google Scholar 

  • Rabinowitz D. 1981. Seven forms of rarity. In: Synge H. (ed.), The Biological Aspects of Rare Plant Conservation. Wiley, Chichester, UK, pp. 205–217.

    Google Scholar 

  • Rehfeldt G.E. and Lester D.T. 1969. Specialization and flexibility in genetic systems of forest trees. Silvae Genetica 18: 118–123.

    Google Scholar 

  • Roberts L. 1989. How fast can trees migrate? Science 243: 735–737.

    Google Scholar 

  • Rusanen M., Vakkari P. and Blom A. 2000. Evaluation of the Finnish gene-conservation strategy for Norway maple (Acer platanoides L.) in the light of allozyme variation. Forest Genetics 7: 155–165.

    Google Scholar 

  • Sæbø A. and Johnsen Ø. 2000. Growth and morphology differ between wind-exposed families of Sorbus aucuparia (L.). Journal of Arboriculture 26: 255–262.

    Google Scholar 

  • Salvesen P.H. 1996. Seedset and fruit development in Tilia cordata Mill. in Norway. In: Nordahl I. (ed.), Seed, Fruit, Fertility. I. Det norskeVidenskaps-Akademi. Mat. Naturv. Klasse, Avhandlinger Ny serie 18: pp. 45–52.

  • Savolainen O. 2000. Guidelines for gene conservation based on population genetics. In: Krishnapillay B., Soepadmo E., Arsrad N.L., Wong A., Appanah S., Wan Chik S. et al. (eds), Forests and Society: The Role of Research, XXI IUFRO World Congress, Kuala Lumpur, Malaysia, 7–12 August 2000. Pramaju Sdn. Bhd. Malaysia, pp. 100–109.

    Google Scholar 

  • Savolainen O. and Kuittinen H. 2000. Small population processes. In: Young A., Boshier D. and Boyle T. (eds), Forest Conservation Genetics. CABI Publishing, Wallingford, UK, pp. 91–100.

    Google Scholar 

  • Skrøppa T. 1991. Within-population variation in autumn frost hardiness and its relationships to bud-set and height growth in Picea abies. Scandinavian Journal of Forest Research 6: 353–363.

    Google Scholar 

  • Skrøppa T. and Dietrichson J. 1986. Winter damage in the IUFRO 1964–1968 provenance experiment with Norway spruce (Picea abies (L.) Karst.). Communications of the Norwegian Forest Research Institute 39: 161–183.

    Google Scholar 

  • Slatkin M. 1985. Gene flow in natural populations. Annual Review of Ecology and Systematics 16: 393–430.

    Google Scholar 

  • Sonesson J. and Eriksson G. 2000. Genotype stability and genetic parameters for growth and biomass traits in a water 3 temperature factorial experiment with Pinus sylvestris L. seedlings. Forest Science 46: 487–495.

    Google Scholar 

  • Stern K. and Roche L. 1974. Genetics of Forest Ecosystems. Ecological Studies 6. Springer, Berlin.

    Google Scholar 

  • Sykes M.T. and Prentice I.C. 1996. Climate change, tree species distributions and forest dynamics: a case study in the mixed conifer / northern hardwoods zone of northern Europe. Climatic Change 34: 161–177.

    Google Scholar 

  • Turok J., Collin E., Demesure B., Eriksson G., Kleinschmit J., Rusanen M. et al. 1998. Noble Hardwoods Network. Report of the second meeting, Lourizán, Spain, 22–25 March 1997. International Plant Genetic Resources Institute, Rome, Italy.

    Google Scholar 

  • UNEP 1992. United Nations Environmental Program. Convention on Biological Diversity. UNEP/BIO./ CONF/ L.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myking, T. Evaluating genetic resources of forest trees by means of life history traits – a Norwegian example. Biodiversity and Conservation 11, 1681–1696 (2002). https://doi.org/10.1023/A:1016814817208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016814817208

Navigation