Skip to main content
Log in

Parallels between the Regimes of Turbulent and Filtration Combustion of Gases in Inert Porous Media

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

The parallels between the turbulent and the filtration combustion of a gas in an inert medium have been considered. It is suggested that in the case where the thermal interaction between the gas and the porous medium is absent, elementary processes of mixing, chemical reaction, and others, which occur in turbulent and filtration combustion, can be characterized by similar dimensionless parameters setting up a correspondence between the integral scale of turbulence and the size of the pores. The dimensionless parameters have been analyzed and the diagram of the Borghi regimes of filtration combustion has been constructed. A number of typical cases of filtration combustion have been characterized using this diagram. It is shown that the considered cases of filtration combustion concern the range of distorted flames and distributed reaction zones according to the Borghi classification. From this it was assumed that the surface of filtration combustion in the first of the considered regimes is continuous in character. The formulas for estimating the rate of gas‐phase combustion under filtration conditions have been recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. Sh. Matros, Propagation of Heat Waves in Heterogeneous Media [in Russian], Novosibirsk (1988).

  2. S. A. Zhdanov, V. V. Martynenko, and S. I. Shabunya, Inzh.-Fiz Zh., 64, No. 5, 569-576 (1993).

    Google Scholar 

  3. G. A. Fateev and O. S. Rabinovich, in: Proc. 27th Int. Symp. on Comb., The Combustion Institute, Pittsburgh, PA (1998), pp. 2451-2458.

    Google Scholar 

  4. D. F. Van der Merwe and W. H. Gauvin, AIChE J., 17, No. 3, 519-528 (1971).

    Google Scholar 

  5. H. S. Mickley, K. A. Smith, and E. I. Korchak, Chem. Eng. Sci., 20, 237-246 (1965).

    Google Scholar 

  6. A. A. Zhakauskas, Heat Transfer in Tube Bundles [in Russian], Kaunas (1980).

  7. R. Borghi, Prog. Energy Combust. Sci., 14, 245-292 (1988).

    Google Scholar 

  8. N. Peters, in: Proc. 21st Int. Symp. on Comb., The Combustion Institute, Pittsburgh, PA (1986), pp. 1231-1250.

    Google Scholar 

  9. V. L. Zimont, in: MCS-99 Proc., Antalia, June (1999), pp. 1155-1165.

  10. G. Damköhler, Z. Elektrochem., 46, 601-626 (1940).

    Google Scholar 

  11. L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Moscow (1978).

  12. J. O. Hinze, Turbulence. An Introduction to Its Mechanism and Theory [Russian translation], Moscow (1963).

  13. Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Moscow (1980).

  14. A. M. Klimov, Zh. Prikl. Mekh. Tekh. Fiz., No. 3, pp. 49-58.

  15. F. A. Williams, Comb. Flame, 26, 269-270 (1976).

    Google Scholar 

  16. F. A. Williams, in: S. N. B. Murty (ed.), Turbulent Mixing in Non-Reactive and Reactive Flows (1975), pp. 189-208.

  17. M. É. Aérov, O. M. Todes, and D. A. Narinskii, Apparatuses with a Stationary Granular Bed [in Russian], Leningrad (1979).

  18. V. S. Babkin, V. I. Drobyshevich, Yu. N. Laevskii, and S. I. Potytnyakov, Fiz. Goreniya Vzryva, No. 2, 17-26 (1983).

    Google Scholar 

  19. K. V. Dobrego and S. A. Zhdanok, Int. J. Heat Mass Transfer, 44, No. 11, pp. 2127-2136 (2001).

    Google Scholar 

  20. V. S. Babkin, A. A. Korzhavin, and V. A. Bunev, Comb. Flame, 87, 182-190 (1991).

    Google Scholar 

  21. K. V. Dobrego, S. A. Zhdanok, and E. I. Khanevich, Exp. Thermal Fluid Sci., 21, 9-16 (2000).

    Google Scholar 

  22. K. Hanamura, R. Echigo, and S. Zhdanok, Int. J. Heat Mass Transfer, 36, No. 13, 3201-3209 (1993).

    Google Scholar 

  23. S. K. Liew, K. N. C. Bray, and J. B. Moss, Combust. Sci. Technol., 27, 69-73 (1981).

    Google Scholar 

  24. W. T. Ashurst, in: Proc. 25th Int. Symp. on Comb., The Combustion Institute, Pittsburgh, PA (1995), pp. 1075-1089.

    Google Scholar 

  25. S. B. Pope, in: Proc. 23rd Int. Symp. on Comb., The Combustion Institute, Pittsburgh, PA (1990), pp. 591-612.

    Google Scholar 

  26. P. A. Libby and F. A. Williams, Turbulent Reacting Flows, New York (1994).

  27. O. L. Gulder, in: Proc. 23rd Int. Symp. on Comb., The Combustion Institute, Pittsburgh, PA (1990), pp. 743-750.

    Google Scholar 

  28. A. A. Korzhavin, V. A. Bunev, R. Kh. Abdullin, and V. S. Babkin, Fiz. Goreniya Vzryva, No. 6, 20-23 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrego, K.V., Chornyi, A.D. Parallels between the Regimes of Turbulent and Filtration Combustion of Gases in Inert Porous Media. Journal of Engineering Physics and Thermophysics 74, 581–590 (2001). https://doi.org/10.1023/A:1016791807624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016791807624

Keywords

Navigation