Skip to main content
Log in

The Current State and Prospects of the Gene Therapy of Duchenne Muscular Dystrophy Worldwide and in Russia

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Failure of drug therapy of Duchenne muscular dystrophy (DMD) stimulated intense search for adequate methods of gene therapy (GT) which would ensure effective delivery of the dystrophin (D) gene, its long-term persistence in transfected cells, and its expression in muscle fibers. The main results of the experimental GT of DMD with the use of viral and nonviral delivery of the D gene into muscles of biological models are discussed. Delivery of a mini-gene of D with a specific muscle promoter using a modified adenoassociated virus is currently the most promising method, which will soon be available for clinical trials. The main results of the studies on the DMD GT in Russia are summarized. The results of experiments on genetic transfection of mdx mice with marker genes and various constructions with the D gene are outlined. The genes are delivered into muscles by means of gene gun, electroporation, viral oligopeptides, liposomes, microspheres, lactoferine, and other nonviral vehicles. It is emphasized that consolidation of funds and efforts of all Russian laboratories dealing with gene and cell therapy of DMD are necessary to complete the experiments and start clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Koenig, M., Hoffman, E.P., Bertelson, C.J., et al., Complete Cloning of the Duchenne Muscular Dystrophy (DMD) cDNA and Preliminary Genomic Organization of the DMD Gene in Normal and Affected Individuals, Cell (Cambridge, Mass.), 1987, vol. 50, pp. 509-517.

    Google Scholar 

  2. Hoffman, E.P., Brown, R.H., Jr., and Kunkel, L.M., Dystrophin: The Protein Product of the Duchenne Muscular Dystrophy Locus, Cell (Cambridge, Mass.), 1987, vol. 51, pp. 919-928.

    Google Scholar 

  3. Den Dunnen, J.T., Grootscholten, P.M., Bakker, E., et al., Topography of the Duchenne Muscular Dystrophy (DMD) Gene: FIGE and cDNA Analysis of 194 Cases Reveals 115 Deletions and 13 Duplications, Am. J. Hum. Genet., 1989, vol. 45, pp. 835-847.

    Google Scholar 

  4. Roberts, R.G., Coffey, A.J., Bobrow, M., et al., Determination of the Exon Structure of the Distal Portion of the Dystrophin Gene by Vectored PCR, Genomics, 1992, vol. 13, pp. 942-950.

    Google Scholar 

  5. Partridge, T., Dystrophin Gene, Protein, and Cell Biology,Brown, S.C. and Lucy, J.A., Eds., Cambridge Univ. Press, 1997, pp. 310-331.

  6. Bulfield, G., Siller, W.G., Wight, P.A., et al., X Chromosome-Linked Muscular Dystrophy (mdx) in the Mouse, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 1189-1192.

    Google Scholar 

  7. Sicinski, P., Geng, Y., Ryder-Cook, A.S., Barnard, E.A., et al., The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation, Science, 1989, vol. 244, pp. 1578-1580.

    Google Scholar 

  8. Araki, E., Nakamura, K., Nakao, K., et al., Targeted Disruption of Exon 52 in the Mouse Dystrophin Gene Induced Muscle Degeneration Similar to That Observed in Duchenne Muscular Dystrophy, Biochem. Biophys. Res. Commun., 1997, vol. 238, pp. 492-497.

    Google Scholar 

  9. Deconinck, N., Tinsley, J., De Backer, F., et al., Expression of Truncated Utrophin Leads to Major Functional Improvements in Dystrophin-Deficient Muscles of Mice, Nat. Med., 1997, vol. 11, pp. 1216-1221.

    Google Scholar 

  10. Cooper, B.J., Winand, N.J., Stedman, H., et al., The Homologue of the Duchenne Locus Is Defective in X-Linked Muscular Dystrophy of Dogs, Nature, 1988, vol. 334, pp. 154-156.

    Google Scholar 

  11. Sharp, N.J., Kornegay, J.N., Van Camp, S.D., et al., An Error in Dystrophin mRNA Processing in Golden Retriever Muscular Dystrophy, an Animal Homologue of Duchenne Muscular Dystrophy, Genomics, 1992, vol. 13, pp. 115-121.

    Google Scholar 

  12. Schatzberg, S.J., Olby, N.J., Breen, M., et al., Molecular Analysis of Spontaneous Dystrophin “Knockout” Dog, Neuromuscular Disord., 1999, vol. 9, pp. 289-295.

    Google Scholar 

  13. Law, P.K., Bertorini, T.E., Goodwin, T.G., et al., Dystrophin Production Induced by Myoblast Transfer Therapy in Duchenne Muscular Dystrophy, Lancet, 1990, vol. 14, pp. 114-115.

    Google Scholar 

  14. Baranov, V.S., A Report on the IV Working Conference on Gene Therapy of Duchenne Dystrophy, Genetika (Moscow), 1999, vol. 35, no. 12, pp. 1724-1726.

    Google Scholar 

  15. Beauchamp, J.R., Morgan, J.E., Pagel, C.N., et al., Dynamics of Myoblast Transplantation Reveal a Discrete Minority of Precursor Stem-Line Properties as the Myogenic Source, J. Cell Biol., 1999, vol. 144, pp. 1113-1121.

    Google Scholar 

  16. Smythe, G.M., Hodgetts, S.I., and Grounds, M.D., Immunobiology and the Future of Myoblast Transfer Therapy, Mol. Ther., 2000, no. 1, pp. 304-313.

    Google Scholar 

  17. Shishkin, S.S., Terekhov, S.M., Krokhina, T.B., et al., Gene Correction by Means of Cell Dystrophy in Duchenne Muscular Dystrophy, Sbornik otchetov Rossiiskoi programmyGenom cheloveka 2000” (Collection of Reports on the Russian Program “Human Genome-2000”), Moscow, 2001, pp. 139-140.

  18. Seigneurin-Venin, S., Bernard, V., Meisset, P.A., et al., Transplantation of Normal and DMD Myoblasts Expressing the Telomerase Gene in SCID Mice, Biochem. Biophys. Res. Commun., 2000, vol. 272, pp. 362-369.

    Google Scholar 

  19. Egorov, E.E., Cell “Telomerization” and a Means of Gene Therapy, Gennaya terapiyameditsine budushchego (Gene Therapy for Future Medicine), Zelenin, A.V., Ed., VINITI RAS, 2000, pp. 130-132.

  20. Gussoni, E., Soneoka, Y., Strickland, C.D., et al., Dystrophin Expression in the mdx Mouse Restored by Stem Cell Transplantation, Nature, 1999, vol. 401, pp. 390-394.

    Google Scholar 

  21. Phelps, S.F., Hauser, M.A., Cole, N.M., et al., Expression of Full-Length and Truncated Dystrophin Minigenes in Transgenic mdx Mice, Hum. Mol. Genet., 1995, no. 4, pp. 1251-1258.

    Google Scholar 

  22. England, S.B., Nicholson, L.V., Johnson, M.A., et al., Very Mild Muscular Dystrophy Associated with the Deletion of 46% of Dystrophin, Nature,1990, vol. 343, pp. 180-182.

    Google Scholar 

  23. Wells, D.J., Wells, K.E., Walsh, F.S., et al., Human Dystrophin Expression Corrects the Myopathic Phenotype in Transgenic mdx Mice, Hum. Mol. Genet., 1992, vol. 1, no. 1, pp. 35-40.

    Google Scholar 

  24. Cox, G.A., Cole, N.M., Matsumura, K., et al., Overexpression of Dystrophin in Transgenic mdx Mice Eliminates Dystrophic Symptoms without Toxicity, Nature, 1993, vol. 364, pp. 725-729.

    Google Scholar 

  25. Acsadi, G., Dickson, G., Love, D.R., et al., Human Dystrophin Expression in mdx Mice after Intramuscular Injection of DNA Constructs, Nature, 1991, vol. 352, pp. 815-818.

    Google Scholar 

  26. Ragot, T., Vincent, N., Chafey, P., et al., Efficient Adenovirus-Mediated Transfer of a Human Minidystrophin Gene to Skeletal Muscle of mdx Mice, Nature, 1993, vol. 361, pp. 647-650.

    Google Scholar 

  27. Acsadi, G., Massie, B., and Jani, A., Adenovirus-Mediated Gene Transfer into Striated Muscles, J. Mol. Med., 1995, vol. 73, no. 4, pp. 165-180.

    Google Scholar 

  28. Clemens, P.R., Kochanek, S., Sumada, Y.S., et al., In Vivo Muscle Gene Transfer of Full-Length Dystrophin with Adenovirus Vector That Lacks All Viral Genes, Gene Therapy,1996, vol. 3, no. 11, pp. 965-972.

    Google Scholar 

  29. Smaglik, P., Gene Therapy Death: Investigators Ponder What Went Wrong, Scientist, 1999, vol. 12, no. 21, p. 1.

    Google Scholar 

  30. Smaglik, P., Gene Therapy Death May Delay New Trials, Scientist, 1999, vol. 13, no. 22, p. 9.

    Google Scholar 

  31. Wang, D.B. and Xiao-Xiao Li, J., Adeno-Associated Virus Vector Carrying Human Minidystrophin Genes Effectively Ameliorates Muscular Dystrophy in mdx Mouse Models, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 13 714-13 719.

    Google Scholar 

  32. Bogdanenko, E.V., Sviridov, Yu.V., Moskovtsev, A.A., et al., Nonvural Gene Transfer in Gene Therapy, Vopr. Med. Khim., 2000, vol. 46, no. 3, pp. 226-245.

    Google Scholar 

  33. Baranov, V.S. and Baranov, A.N., Gene Therapy of Monogenic Hereditary Disorders: Duchenne Muscular Dystrophy, Vopr. Med. Khim., 2000, vol. 46, no. 3, pp. 279-293.

    Google Scholar 

  34. Zelenin, A.V., Kolesnikov, V.A., Tarasenko, O.A., et al., Bacterial β-Galactosidase and Human Dystrophin Genes Are Expressed in Mouse Skeletal Muscles after Ballistic Transfection, FEBS Lett., 1997, vol. 414, pp. 319-392.

    Google Scholar 

  35. Mir, L.M., Bureau, M.F., Gehl, J., et al., High-Efficiency Gene Transfer into Skeletal Muscle Mediated by Electric Pulses, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 4262-4267.

    Google Scholar 

  36. Blaese, R.M., Optimism Regarding the Use of RNA/DNA Hybrids to Repair Genes at High Efficiency, J. Gene Med., 1999, vol. 1, no. 2, pp. 144-147.

    Google Scholar 

  37. Rando, T.A., Disatnik, M.H., and Zhou, L.Z., Rescue of Dystrophin Expression in mdx Mouse Muscle by RNA/DNA Oligonucleotides, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 5363-5368.

    Google Scholar 

  38. Bartlett, R.J., Stockinger, S., Denis, M.M., et al., In Vivo Targeted Repair of a Point Mutation in the Canine Dystrophin Gene by a Chimeric RNA/DNA Oligonucleotide, Nat. Biotechnol., 2000, vol. 18, pp. 615-622.

    Google Scholar 

  39. Wilton, S.D., Lloyd, F., Carville, K., et al., Specific Removal of the Nonsense Mutation From the mdx Dystrophin mRNA Using Antisense Oligonucleotides, Neuromuscular Disord., 1999, vol. 9, no. 5, pp. 330-338.

    Google Scholar 

  40. Mann, C.J., Honeyman, K., Cheng, A.J., et al., Antisense-Induced Exon Skipping and Synthesis of Dystrophin in the mdx Mouse, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 42-47.

    Google Scholar 

  41. Burton, E.A., Tinsley, J.M., Holzfeind, P.J., et al., A Second Promoter Provides an Alternative Target for Therapeutic Up-Regulation of Utrophin in Duchenne Muscular Dystrophy, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 14 025-14 030.

    Google Scholar 

  42. Tinsley, J.M., Potter, A.C., Phelps, S.R., et al., Amelioration of the Dystrophic Phenotype of mdx Mice Using a Truncated Utrophin Transgene, Nature, 1996, vol. 384, pp. 349-353.

    Google Scholar 

  43. Clerk, A., Morris, G.E., Dubowitz, V., et al., Dystrophin-Related Protein, Utrophin, in Normal and Dystrophic Human Fetal Skeletal Muscle, Histochem. J., 1993, vol. 25, pp. 554-561.

    Google Scholar 

  44. Deconinck, N., Tinsley, J., De Backer, F., et al., Expression of Truncated Utrophin Leads to Major Functional Improvements in Dystrophin-Deficient Muscles of Mice, Nat. Med., 1997, vol. 3, pp. 1216-1221.

    Google Scholar 

  45. Wakefield, P.M., Tinsley, J.M., Wood, M.J., et al., Prevention of Dystrophin Phenotype in the Dystrophin/ Utrophin-Deficient Muscle Following Adenovirus-Mediated Transfer of a Utrophin Minigene, Gene Ther., 2000, vol. 7, pp. 201-204.

    Google Scholar 

  46. Khurana, T.S., Rosmarin, A.G., Shang, J., et al., Activation of Utrophin Promoter by Heregulin via the ETSRelated Transcription Factor Complex GA-Binding Protein α/β, Mol. Biol. Cell, 1999, vol. 10, pp. 2075-2086.

    Google Scholar 

  47. Corbi, N., Libri, V., Fanciulli, M., et al., The Artificial Zinc Finger Coding Gene “Jazz” Binds the Utrophin Promoter and Activates Transcription, Gene Ther., 2000, vol. 7, pp. 1076-1083.

    Google Scholar 

  48. Ferrer, A., Wells, K.E., and Wells, D.J., Immune Responses to Dystrophin: Implications for Gene Therapy of Duchenne Muscular Dystrophy, Gene Ther., 2000, vol. 7, pp. 1439-1446.

    Google Scholar 

  49. Baranov, V.S., Zelenin, A., Baranov, A.N., et al., Human Dystrophin Gene Expression in mdx Muscles after In Vivo Ballistic Transfection, Application of Synthetic Olygopeptide Complexes and Cationic Liposomes, NATO ASI Ser., Subser. M, 1997, vol. 105, pp. 219-223.

    Google Scholar 

  50. Zelenin, A.V., Tarasenko, O.V., Kolesnikov, V.M., et al., Expression of the Human Dystrophin Gene in Skeletal Muscles of mdx Mice after Ballistic Transfection, Genetika (Moscow), 1998, vol. 34, no. 6, pp. 730-736.

    Google Scholar 

  51. Baranov, V.S., Tarasenko, O.V., Baranov, A.N., et al., Expression of the Human Dystrophin Gene in Myofibrils of mdx Mice after Transfection with the Help of Liposomes and Synthetic Oligopeptides, Genetika (Moscow), 1998, vol. 34, no. 7, pp. 876-882.

    Google Scholar 

  52. Baranov, A., Glazkov, P., Kiselev, A., et al., Local and Distant Transfection of mdx Muscle Fibers with Dystrophin and lacZ Genes Delivered in Vivo by Synthetic Microspheres, Gene Ther., 1999, no. 6, pp. 1406-1414.

    Google Scholar 

  53. Sinogeeva, N.A., Bogdanova, M.A., Aleinikova, T.D., et al., Expression of Marker Genes in Muscular Fibers after In Vivo Lactoferrin-Mediated Transfection, Genetika (Moscow), 2000, vol. 36, no. 6, pp. 749-759.

    Google Scholar 

  54. Baranov, V.S., Zelenin, A.V., Ostapenko, O.V., et al., Specific Features of Transfection and Expression of Gene Constructs Containing the Human Dystrophin cDNA with Various Methods of Virus-Mediated Delivery, Sbornik otchetov Rossiiskoi programmyGenom cheloveka 2000” (Collection of Reports on the Russian Program “Human Genome-2000”), Moscow, 2001, pp. 81-83.

  55. Kiselev, A.V., Ostapenko, O.V., Baranov, A.N., et al., Transfection with Genetic Construction Containing Suppressor tRNA Genes Cause Toxic Effects in Vitro, Abstr. ESHG, Stockholm, Oct. 2000.

  56. Lukascheva, L. and Evgrafov, O., Expression of β-Galactosidase Gene in Different Organs of mdx Mice after Intravenous Injection of Naked DNA and DNA—Peptide Complexes, Eur. J. Hum. Genet., 2000, vol. 8, no. 1, p. 174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, V.S., Baranov, A.N. & Zelenin, A.V. The Current State and Prospects of the Gene Therapy of Duchenne Muscular Dystrophy Worldwide and in Russia. Russian Journal of Genetics 37, 868–875 (2001). https://doi.org/10.1023/A:1016765313810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016765313810

Keywords

Navigation