Skip to main content
Log in

Theoretical Analysis of d–d Transitions for the Reduced Cr/Silica System

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cluster models are constructed for mono- and dinuclear Cr(II) sites and mononuclear Cr(III) sites on the Cr/SiO2 Phillips catalyst and used to compute d–d transition energies and intensities. Mononuclear pseudo-tetrahedral Cr(II) gives rise to two bands of electric-dipole-allowed d–d transitions, at 8,400 and 12,300 cm−1. This doublet is lowered in energy and intensity as the bond angle about chromium, ∠OCrO, opens up. The dinuclear site gives rise to bands at 5,200 and 10,300 cm−1, consistent with calculations for a mononuclear cluster of comparable value for ∠OCrO. A tri-coordinated Cr(III) cluster shows bands of comparable oscillator strengths at energies of 11,000, 16,000, 18,000–20,000 and 33,000 cm−1. The predicted bands correspond well with d–d bands in experimental diffuse reflectance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Weckhuysen andR.A. Schoonheydt, Catal. Today 49 (1999) 441.

    Google Scholar 

  2. B.M. Weckhuysen andR.A. Schoonheydt, Catal. Today 51 (1999) 215.

    Google Scholar 

  3. B.M. Weckhuysen,I.E. Wachs andR.A. Schoonheydt, Chem. Rev. 96 (1996) 3327.

    Google Scholar 

  4. M.P. McDaniel, Adv. Catal. 33 (1985) 47.

    Google Scholar 

  5. B. Fubini,G. Ghiotti,L. Stradella,E. Garrone andC. Morterra, J. Catal. 66 (1980) 200.

    Google Scholar 

  6. B.M. Weckhuysen,L.M. De Ridder andR.A. Schoonheydt, J. Phys. Chem. 97 (1993) 4756.

    Google Scholar 

  7. G. Ghiotti,E. Garrone andA. Zecchina, J. Mol. Catal. 46 (1988) 61.

    Google Scholar 

  8. B. Rebenstorf, J. Polym. Sci. A 29 (1991) 1949.

    Google Scholar 

  9. B.M. Weckhuysen,R.A. Schoonheydt,J. Jehng,I.E. Wachs,J. Cho,R. Ryoo,S. Kijlstra andE. Poels, J. Chem. Soc. Faraday Trans. 91 (1995) 3245.

    Google Scholar 

  10. A. Zecchina,E. Garrone,G. Ghiotti,C. Morterra andE. Borello, J. Phys. Chem. 79 (1975) 966.

    Google Scholar 

  11. A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

    Google Scholar 

  12. S.H. Vosko,L. Wilk andM. Nusair, Can. J. Phys. 58 (1980) 1200.

    Google Scholar 

  13. C. Lee,W. Yang andR.G. Parr, Phys. Rev. B 37 (1988) 785.

    Google Scholar 

  14. M.J. Frisch et al., Gaussian 98, Revision A.9 (1998).

  15. Ø. Espelid,K.J. Børve andV.R. Jensen, J. Phys. Chem. A 102 (1998) 10414.

    Google Scholar 

  16. C.W.J. Bauschlicher,S.R. Langhoff andL.A. Barnes, J. Chem. Phys. 91 (1989) 2399.

    Google Scholar 

  17. A. McLean andG. Chandler, J. Chem. Phys. 72 (1980) 5639.

    Google Scholar 

  18. B.O. Roos,K. Andersson,M.P. Fülscher,P.-Å. Malmqvist,L. Serrano-Andrés,K. Pierloot andM. Merchán, Adv. Chem. Phys. 93 (1996) 216.

    Google Scholar 

  19. K. Andersson et al., MolCas 4.1 (1997).

  20. B.O. Roos, in: Ab Initio Methods in Quantum Chemistry, ed. K.P. Lawley (Wiley, New York, 1987).

    Google Scholar 

  21. C.W.J. Bauschlicher andS.R. Langhoff, Chem. Rev. 91 (1991) 701.

    Google Scholar 

  22. P.-Å. Malmqvist, in: Molecules in the Stellar Environment. Lecture Notes in Physics, Vol. 428, ed. U.G. Jørgensen (Springer, New York, 1994).

    Google Scholar 

  23. Ø. Espelid andK.J. Børve, J. Catal. 195 (2000) 125.

    Google Scholar 

  24. B. Civalleri,E. Garrone andP. Ugliengo, Chem. Phys. Lett. 294 (1998) 103.

    Google Scholar 

  25. G. Ghiotti,E. Garrone,G.D. Gatta,B. Fubini andE. Giamello, J. Catal. 80 (1983) 249.

    Google Scholar 

  26. H.-L. Krauss,B. Rebenstorf andU. Westphal, Z. Anorg. Allg. Chem. 414 (1975) 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espelid, Ø., Børve, K.J. Theoretical Analysis of d–d Transitions for the Reduced Cr/Silica System. Catalysis Letters 75, 49–54 (2001). https://doi.org/10.1023/A:1016753802209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016753802209

Navigation