Skip to main content
Log in

Conversions of Methane to Synthesis Gas over Co/γ-Al2O3 by CO2 and/or O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The goal of the paper was to investigate the effect of the catalyst precursor on the catalytic activity. For this reason, the structure, the reducibility and the reaction behavior of γ-Al2O3-supported Co (24 wt%) catalysts as a function of calcination temperature (T c) were investigated using X-ray diffraction, temperature-programmed reduction, CO chemisorption, pulse reaction with pure CH4, and the catalytic reactions of methane conversion to synthesis gas. Depending on T c, one, two, or three of the following Co-containing compounds, Co3O4, Co2AlO4, and CoAl2O4, were identified. Their reducibility decreased in the sequence: Co3O4>Co2AlO4>CoAl2O4. Co3O4 was generated as a major phase at a T c of 500°C and Co2AlO4 and CoAl2O4 at a T c of 1000°C. The reduced Co/γ-Al2O3 catalysts, obtained via the reduction of the 500 and 1000°C calcined catalysts, provided high and stable activities for the partial oxidation of methane and the combined partial oxidation and CO2 reforming of methane. They deactivated, however, rapidly in the CO2 reforming of methane. Possible explanations for the stability are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Rostrup-Nielsen, Catal. Today 18 (1993) 305.

    Google Scholar 

  2. J.M. Fox, III, Catal. Rev. Sci. Eng. 35 (1993) 169.

    Google Scholar 

  3. A.M. Gadalla andB. Bower, Chem. Eng. Sci. 43 (1988) 3049.

    Google Scholar 

  4. J.T. Richardson andS.A. Paripatyadar, Appl. Catal. 61 (1990) 293.

    Google Scholar 

  5. A.T. Ashcroft,A.K. Cheetham,M.L.H. Green andP.D.F. Vernon, Nature 352 (1991) 225.

    Google Scholar 

  6. J.R. Rostrup-Nielsen andJ.-H.B. Hansen, J. Catal. 144 (1993) 38.

    Google Scholar 

  7. E. Ruckenstein andY.H. Hu, Appl. Catal. A 133 (1995) 149.

    Google Scholar 

  8. V.C.H. Kroll,H.M. Swaan andC. Mirodatos, J. Catal. 161 (1996) 409.

    Google Scholar 

  9. R.N. Bhat andW.M.H. Sachtler, Appl. Catal. A 150 (1997) 279.

    Google Scholar 

  10. S.M. Stagg,E. Romeo,C. Padro andD.E. Resasco, J. Catal. 178 (1998) 137.

    Google Scholar 

  11. K. Tomishige,Y. Chen andK. Fujimoto, J. Catal. 181 (1999) 91.

    Google Scholar 

  12. E. Ruckenstein andH.Y. Wang, Appl. Catal. A 204 (2000) 257.

    Google Scholar 

  13. A.T. Ashcroft,A.K. Cheetham,J.S. Foord et al., Nature 344 (1990) 319.

    Google Scholar 

  14. D. Dissanayake,M.P. Rosynek,K.C.C. Kharas andL.H. Lunsford, J. Catal. 132 (1991) 117.

    Google Scholar 

  15. D.A. Hickman andL.D. Schmidt, J. Catal. 138 (1992) 267.

    Google Scholar 

  16. D.A. Hickman andL.D. Schmidt, Science 259 (1993) 343.

    Google Scholar 

  17. A. Slagtern andU. Olsbye, Appl. Catal. A 110 (1994) 99.

    Google Scholar 

  18. V.R. Choudhary,B.S. Uphade andA.S. Mamman, Catal. Lett. 32 (1995) 387.

    Google Scholar 

  19. A. Santos,M. Menéndez,A. Monzón et al., J. Catal. 158 (1996) 83.

    Google Scholar 

  20. R. Lago,G. Bini,M.A. Pena andJ.L.G. Fierro, J. Catal. 167 (1997) 198.

    Google Scholar 

  21. V.A. Tsipouriari,Z. Zhang andX.E.J. Verykios, J. Catal. 179 (1998) 283.

    Google Scholar 

  22. E. Ruckenstein andY.H. Hu, Appl. Catal. A 183 (1999) 85.

    Google Scholar 

  23. H.Y. Wang andE. Ruckenstein, J. Catal. 186 (1999) 181.

    Google Scholar 

  24. H.Y. Wang andE. Ruckenstein, J. Catal. 199 (2001) 309.

    Google Scholar 

  25. V.R. Choudhary,B.S. Uphade andA.A. Belhekar, J. Catal. 163 (1996) 312.

    Google Scholar 

  26. A.M. O'Connor andJ.R.H. Ross, Catal. Today 46 (1998) 203.

    Google Scholar 

  27. E. Ruckenstein andY.H. Hu, Ind. Eng. Chem. Res. 37 (1998) 1744.

    Google Scholar 

  28. D. Dissanayake,M.P. Rosynek andJ.H. Lunsford, J. Phys. Chem. 97 (1993) 3644.

    Google Scholar 

  29. Y.F. Chang andH. Heinemann, Catal. Lett. 21 (1993) 215.

    Google Scholar 

  30. P. Arnoldy andJ.A. Moulijn, J. Catal. 93 (1985) 38.

    Google Scholar 

  31. K.S. Chung andF.E. Massoth, J. Catal. 64 (1980) 320.

    Google Scholar 

  32. M. LoJacono,J.L. Verbeck andG.C.A. Schuitt, J. Catal. 29 (1973) 463.

    Google Scholar 

  33. R.L. Chin andD.M. Hercules, J. Phys. Chem. 86 (1982) 360.

    Google Scholar 

  34. J.T. Richardson andL.W. Vernon, J. Phys. Chem. 62 (1958) 1153.

    Google Scholar 

  35. J.R. Rostrup-Nielsen, in: Catalysis Science and Technology, Vol. 5 eds. J.R. Anderson andM. Boudart (Springer, Berlin, 1984) pp. 1-118.

    Google Scholar 

  36. S. Teuner, Hydrocarbon Process. 64 (1985) 106.

    Google Scholar 

  37. E. Ruckenstein, in: Metal-Support Interactions in Catalysis, Sintering, and Redispersion, eds. S.A. Stevenson,J.A. Dumesic,R.T.K. Baker and E. Ruckenstein (Van Nostrand Reinhold, New York, 1987) p. 297.

    Google Scholar 

  38. H.Y. Wang andE. Ruckenstein, Appl. Catal. A 209 (2001) 207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Ruckenstein, E. Conversions of Methane to Synthesis Gas over Co/γ-Al2O3 by CO2 and/or O2. Catalysis Letters 75, 13–18 (2001). https://doi.org/10.1023/A:1016719703118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016719703118

Navigation