Skip to main content
Log in

Variation of Human Mitochondrial DNA: Distribution of Hot Spots in Hypervariable Segment I of the Major Noncoding Region

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) samples belonging to fifteen phylogenetically related mtDNA types specific to the populations of Europe (H, V, J, T, U, K, I, W, and X) and Northern Asia (A, C, D, G, Y, and Z) were typed for sequence variation in hypervariable segment I (HVSI). The approach used allowed to distinguish several hypervariable sites at nucleotide positions 16093, 16129, 16189, 16311, and 16362. Identical mutations at these sites were found in 10–11 out of 15 mtDNA groups examined. Positions 16126, 16172, 16192, 16256, 16261, 16291, 16293, and 16298 appeared to be less variable, since parallel mutations at these sites were found in 6–8 European and Asian mtDNA groups. The examples of the effects of mutations in hypervariable positions at the major noncoding mtDNA region on the frequency of reverse mutations in other mtDNA regions are presented. It was shown that such effects of nucleotide context on the mutation rate could be observed in phylogenetic mtDNA networks such as cyclic structures like rhombs and cubes. Analogous structures in the networks could be seen also in the case of the appearance of recombinant mtDNA types resulted from homologous recombination between mtDNA molecules in heteroplasmic mixture. The problem of the effect of polynucleotide context on the intensity of mtDNA mutagenesis is discussed. Recombination processes along with site-directed mutagenesis caused by action of genetic factors (of nuclear genome) and/or of the environment are considered as possible mechanisms of mitochondrial genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anderson, S., Bankier, A.T., Barrel, B.G., et al., Sequence and Organization of the Human Mitochondrial Genome, Nature, 1981, vol. 290, pp. 457-465.

    Google Scholar 

  2. Howell, N., Kubacka, I., and Mackey, D.A., How Rapidly Does the Human Mitochondrial Genome Evolve?, Am. J. Hum. Genet., 1996, vol. 59, pp. 501-509.

    Google Scholar 

  3. Wallace, D.C., Mitochondrial DNA Variation in Human Evolution, Degenerative Disease and Aging, Am. J. Hum. Genet., 1995, vol. 57, pp. 201-223.

    Google Scholar 

  4. Aquadro, C.F. and Greenberg, B.D., Human Mitochondrial DNA Variation and Evolution: Analysis of Nucleotide Sequences from Seven Individuals, Genetics, 1983, vol. 103, pp. 287-312.

    Google Scholar 

  5. Vigilant, L., Stoneking, M., Harpending, H., et al., African Populations and the Evolution of Mitochondrial DNA, Science, 1991, vol. 253, pp. 1503-1507.

    Google Scholar 

  6. Clayton, D.A., Replication in Animal Mitochondrial DNA, Cell (Cambridge, Mass.), 1982, vol. 28, pp. 693-705.

    Google Scholar 

  7. Clayton, D.A., Transcription of the Mammalian Mitochondrial Genome, Annu. Rev. Biochem., 1984, vol. 53, pp. 573-594.

    Google Scholar 

  8. Richards, M.B., Macaulay, V.A., Bandelt, H.-J., and Sykes, B.C., Phylogeography of Mitochondrial DNA in Western Europe, Ann. Hum. Genet., 1998, vol. 62, pp. 241-260.

    Google Scholar 

  9. Schurr, T.G., Sukernik, R.I., Starikovskaya, Y.B., and Wallace, D.C., Mitochondrial DNA Variation in Koryaks and Itel'men: Population Replacement in the Okhotsk Sea—Bering Sea Region during the Neolithic, Am. J. Phys. Anthropol., 1999, vol. 108, pp. 1-39.

    Google Scholar 

  10. Chen, Y.-C., Olckers, A., Schurr, T.G., et al., mtDNA Variation in the South African Kung and Khwe and Their Genetic Relationships to Other African Populations, Am. J. Hum. Genet., 2000, vol. 66, pp. 1362-1383.

    Google Scholar 

  11. Wakeley, J., Substitution Rate Variation among Sites in Hypervariable Region 1 of Human Mitochondrial DNA, J. Mol. Evol., 1993, vol. 37, pp. 613-623.

    Google Scholar 

  12. Paabo, S., Mutational Hotspots in the Mitochondrial Microcosm, Am. J. Hum. Genet., 1996, vol. 59, pp. 493-496.

    Google Scholar 

  13. Jazin, E., Soodyall, H., Jalonen, P., et al., Mitochondrial Mutation Rate Revisited: Hot Spots and Polymorphism, Nat. Genet., 1998, vol. 18, pp. 109-110.

    Google Scholar 

  14. Malyarchuk, B.A. and Derenko, M.V., Molecular Instability of the Mitochondrial Haplogroup T Sequences at Nucleotide Positions 16 292 and 16 296, Ann. Hum. Genet., 1999, vol. 63, pp. 489-497.

    Google Scholar 

  15. Meyer, S., Weiss, G., and von Haeseler, A., Pattern of Nucleotide Substitution and Rate of Heterogeneity in the Hypervariable Regions I and II of Human mtDNA, Genetics, 1999, vol. 152, pp. 1103-1110.

    Google Scholar 

  16. Rogozin, I.B., Kolchanov, N.A., Solov'ev, V.V., and Sredneva, N.E., A Computer System for Studying the Role of a Polynucleotide Context in Mutagenesis, Komp'yuternyi analiz struktury, funktsii i evolyutsii geneticheskikh makromolekul. Problemy intellektualizatsii (Computer Analysis of the Structure, Function, and Evolution of Genetic Macromolecules: Intellectualization Problems), Novosibirsk: Inst. Tsitol. Genet., 1989, pp. 90-110.

    Google Scholar 

  17. Cann, R.L., Brown, W.M., and Wilson, A.C., Polymorphic Sites and the Mechanism of Evolution in Human Mitochondrial DNA, Genetics, 1984, vol. 106, pp. 479-499.

    Google Scholar 

  18. Malyarchuk, B.A., CG Methylation and Mutagenesis in Human Mitochondrial DNA, Mol. Biol. (Moscow), 1995, vol. 29, no. 2, pp. 281-286.

    Google Scholar 

  19. Bendall, K.E. and Sykes, B.C., Length Heteroplasmy in the First Hypervariable Segment of the Human mtDNA Control Region, Am. J. Hum. Genet., 1995, vol. 57, pp. 248-256.

    Google Scholar 

  20. Howell, N. and Smejkal, C.B., Persistent Heteroplasmy of a Mutation in the Human mtDNA Control Region: Hypermutation as an Apparent Consequence of Simple-Repeat Expansion/Contraction, Am. J. Hum. Genet., 2000, vol. 66, pp. 1589-1598.

    Google Scholar 

  21. Hasegawa, M., Di Rienzo, A., Kocher, T., and Wilson, A., Toward a More Accurate Time Scale for the Human Mitochondrial DNA Tree, J. Mol. Evol., 1993, vol. 37, pp. 347-354.

    Google Scholar 

  22. Macaulay, V., Richards, M., Hickey, E., et al., The Emerging Tree of West Eurasian mtDNAs: A Synthesis of Control-Region Sequences and RFLPs, Am. J. Hum. Genet., 1999, vol. 64, pp. 232-249.

    Google Scholar 

  23. Torroni, A., Cruciani, F., Rengo, C., et al., The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness, Am. J. Hum. Genet., 1999, vol. 65, pp. 1349-1358.

    Google Scholar 

  24. Malyarchuk, B.A. and Derenko, M.V., Mitochondrial DNA Variability in Russians and Ukrainians: Implication to the Origin of the Eastern Slavs, Ann. Hum. Genet., 2001, vol. 65 (in press).

  25. Torroni, A., Huoponen, K., Francalacci, P., et al., Classification of European mtDNAs from an Analysis of Three European Populations, Genetics, 1996, vol. 144, pp. 1835-1850.

    Google Scholar 

  26. Helgason, A., Sigurdardottir, S., Gulcher, J.R., et al., mtDNA and the Origin of the Icelanders: Deciphering Signals of Recent Population History, Am. J. Hum. Genet., 2000, vol. 66, pp. 999-1016.

    Google Scholar 

  27. Starikovskaya, Y.B., Sukernik, R.I., Schurr, T.G., et al., mtDNA Diversity in Chukchi and Siberian Eskimos: Implications for the Genetic History of Ancient Beringia and the Peopling of the New World, Am. J. Hum. Genet., 1998, vol. 63, pp. 1473-1491.

    Google Scholar 

  28. Kolman, C.J., Sambuughin, N., and Bermingham, E., Mitochondrial DNA Analysis of Mongolian Populations and Implications for the Origin of New World Founders, Genetics, 1996, vol. 142, pp. 1321-1337.

    Google Scholar 

  29. Torroni, A., Schurr, T.G., Cabell, M.F., et al., Asian Affinities and Continental Radiation of the Four Founding Native American mtDNAs, Am. J. Hum. Genet., 1993, vol. 53, pp. 563-590.

    Google Scholar 

  30. Ward, R.H., Frazier, B.L., Dew-Jager, K., and Paabo, S., Extensive Mitochondrial Diversity within a Single Amerindian Tribe, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 8720-8724.

    Google Scholar 

  31. Ward, R.H., Redd, A., Valencia, D., et al., Genetic and Linguistic Differentiation in the Americas, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 10 663-10 667.

    Google Scholar 

  32. Ward, R.H., Salzano, F.M., Bonatto, S.L., et al., Mitochondrial DNA Polymorphism in Three Brazilian Indian Tribes, Am. J. Hum. Biol., 1996, vol. 8, pp. 317-323.

    Google Scholar 

  33. Horai, S., Kondo, R., Nakagawa-Hattori, Y., et al., Peopling of the Americas, Founded by Four Major Lineages of Mitochondrial DNA, Mol. Biol. Evol., 1993, vol. 10, no. 1, pp. 23-47.

    Google Scholar 

  34. Stone, A.C. and Stoneking, M., mtDNA Analysis of a Prehistoric Oneota Population: Implications for the Peopling of the New World, Am. J. Hum. Genet., 1998, vol. 62, pp. 1153-1170.

    Google Scholar 

  35. Rickards, O., Martinez-Labarga, C., Lum, J.K., et al., mtDNA History of the Cayapa Amerinds of Ecuador: Detection of Additional Founding Lineages for the Native American Populations, Am. J. Hum. Genet., 1999, vol. 65, pp. 519-530.

    Google Scholar 

  36. Kittles, R.A., Bergen, A.W., Urbanek, M., et al., Autosomal, Mitochondrial, and Y-Chromosome DNA Variation in Finland: Evidence for a Male-Specific Bottleneck, Am. J. Phys. Anthropol., 1999, vol. 108, pp. 381-399.

    Google Scholar 

  37. Green, L.D., Derr, J.N., and Knight, A., mtDNA Affinities of the Peoples of North-Central Mexico, Am. J. Hum. Genet., 2000, vol. 66, pp. 989-998.

    Google Scholar 

  38. Bandelt, H.-J., Forster, P., Sykes, B.C., and Richards, M.B., Mitochondrial Portraits of Human Populations Using Median Networks, Genetics, 1995, vol. 141, pp. 743-753.

    Google Scholar 

  39. Metspalu, E., Kivisild, T., Kaldma, K., et al., The Trans-Caucasus and the Expansion of the Caucasoid-Specific Human Mitochondrial DNA, Genomic Diversity: Applications in Human Population Genetics, Papiha, S., Deka, R., and Chakraborty, R., Eds., New York: Kluwer Academic, 1999, pp. 121-133.

    Google Scholar 

  40. Derenko, M.V. and Shilds, J.F., Nucleotide Sequence Diversity of Mitochondrial DNA in Three Groups of the North Asian Indigenous Populations, Mol. Biol. (Moscow), 1997, vol. 31, no. 5, pp. 784-789.

    Google Scholar 

  41. Forster, P., Harding, R., Torroni, A., and Bandelt, H.-J., Origin and Evolution of Native American mtDNA Variation: A Reappraisal, Am. J. Hum. Genet., 1996, vol. 59, pp. 935-945.

    Google Scholar 

  42. Comas, D., Calafell, F., Mateu, E., et al., Trading Genes along the Silk Road: mtDNA Sequences and the Origin of Central Asian Populations, Am. J. Hum. Genet., 1998, vol. 63, pp. 1824-1838.

    Google Scholar 

  43. Lalueza, C., Perez-Perez, A., Prats, E., et al., Lack of Founding Amerindian Mitochondrial DNA Lineages in Extinct Aborigines from Tierra Del Fuego-Patagonia, Hum. Mol. Genet., 1997, vol. 6, pp. 41-46.

    Google Scholar 

  44. Malyarchuk, B.A., Lapinskii, A.G., and Solovenchuk, L.L., Short Repeats and Variation in the Major Noncoding Region of Human Mitochondrial DNA, Mol. Biol. (Moscow), 1993, vol. 27, no. 5, pp. 1078-1084.

    Google Scholar 

  45. Hagelberg, E., Goldman, N., Lio, P., et al., Evidence for Mitochondrial DNA Recombination in a Human Population of Island Melanesia, Proc. R. Soc. London, B, Biol. Sci., 1999, vol. 266, pp. 485-492.

    Google Scholar 

  46. Bykhovskaya, Y., Estivill, X., Taylor, K., et al., Candidate Locus for a Nuclear Modifier Gene for Maternally Inherited Deafness, Am. J. Hum. Genet., 2000, vol. 66, pp. 1905-1910.

    Google Scholar 

  47. Macmillan, C., Johns, T.A., Fu, K., and Shoubridge, E.A., Predominance of the T14484C Mutation in French-Canadian Families with Leber Hereditary Optic Neuropathy Is Due to a Founder Effect, Am. J. Hum. Genet., 2000, vol. 66, pp. 332-335.

    Google Scholar 

  48. Grzybowski, T., Extremely High Levels of Human Mitochondrial DNA Heteroplasmy in Single Hair Roots, Electrophoresis, 2000, vol. 21, pp. 548-553.

    Google Scholar 

  49. Galloway, C.D., Reynolds, R.L., Herrin, G.L., and Anderson, W.W., The Frequency of Heteroplasmy in the HVII Region of mtDNA Differs across Tissue Types and Increases with Age, Am. J. Hum. Genet., 2000, vol. 66, pp. 1384-1397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malyarchuk, B.A., Derenko, M.V. Variation of Human Mitochondrial DNA: Distribution of Hot Spots in Hypervariable Segment I of the Major Noncoding Region. Russian Journal of Genetics 37, 823–832 (2001). https://doi.org/10.1023/A:1016707228425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016707228425

Keywords

Navigation