Skip to main content
Log in

First-Known High-Nuclearity Copper–Nickel Carbonyl Cluster: [CuxNi35−x(CO)40]5− (with x=3 or 5) Containing an Unprecedented 35-Atom Three-Layer hcp Triangular Stacking Metal-Core Geometry

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Reactions of [Ni6(CO)12]2- (1) with CuBr2 have given rise in small yields (∼10%) to the first example of a close-packed copper-nickel carbonyl cluster; its formulation as [CuxNi35-x(CO)40]5- (with x=3 or 5) is based upon a low-temperature CCD X-ray crystallographic determination coupled with an elemental analysis and X-ray fluorescence measurements. This air-unstable black pentaanion (2) together with one co-crystallized bromide anion, six [NMe4]+ counterions, and one solvated acetone molecule comprise the crystallographic independent part in a monoclinic unit cell of P21/n symmetry (with Z=4). The geometrically unprecedented 35-atom hcp M(A)2M(B)3Ni30 polyhedron of pseudo-D3h symmetry consists of a central 15-atom equilateral ν4M(B)3Ni12 triangle that is capped on both sides by two symmetry-related 10-atom equilateral ν3M(A)Ni9 triangles. The 35-atom M(A)2M(B)3Ni30 core is encapsulated by 40 COs, whose connectivities, due to an “extra” CO ligand on one of the three triangular sides, reduce the pseudo D3h symmetry of the metal core to Cs. An elemental analysis via AA and X-ray fluorescence measurements resulted in Cu/Ni ratios of 3.2/31.8 and 3.7/31.3, respectively, that are consistent with the metal core being either Cu5Ni30 (i.e., M(A)=M(B)=Cu) or Cu3Ni32 (i.e., M(A)=Ni; M(B)=Cu). Several attempts to determine the actual stoichiometry of the metal core by use of electrospray FT/MS/ICR measurements were unsuccessful. The maximum metal-core diameter of 2 is ca. 0.41 nm parallel and 0.85 nm perpendicular to the principal 3-fold axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Selected articles with references are (a) J. H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts, and Applications (Wiley, New York, 1983). (b) V. Ponec (1983). Adv. Catal. 32, 149. (c) W. M. H. Sachtler and R. A. van Santen (1977). Adv. Catal. 26, 69. (d) J. H. Sinfelt (1987). Acc. Chem. Res. 20, 134. (e) W. M. H. Sachtler and A. Yu. Stakheev (1993). Catal. Today 12, 283. (f ) B. C. Gates, Catalytic Chemistry (Wiley, New York, 1992). (g) P. Braunstein and J. Rose, in E. W. Abel, F. G. A. Stone, and G. Wilkinson (eds.), Comprehensive Organometallic Chemistry II (Elsevier, Tarrytown, New York, 1995), Vol. 10, in R. D. Adams (ed.), Chap. 7, p. 351. (h) G. Süss-Fink and G. Meister (1993). Adv. Organomet. Chem. 35, 41. (i) N. Toshima and T. Yonezawa (1998). New J. Chem. 22, 1179. ( j) R. D. Adams and F. A. Cotton (eds.), Catalysis by Di-and Polynuclear Metal Cluster Complexes (Wiley–VCH, New York, 1998). (k) P. Braunstein, L. A. Oro, and P. R. Raithby (eds.), Metal Clusters in Chemistry (Wiley–VCH, New York, 1999), Vol. 2. (l) G. Ertl, H. Knözinger, and J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis (Wiley–VCH, New York, 1994).

    Google Scholar 

  2. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  3. (a) J. A. Rodriguez and D. W. Goodman (1995). Acc. Chem. Res. 28, 477. (b) J. A. Rodriguez (1996). Surf. Sci. 345, 347. (c) J. A. Rodriguez (1996). Heterogen. Chem. Rev. 3, 17. (d) J. A. Rodriguez (1996). Surf. Sci. Rep. 24, 223. (e) J. A. Rodriguez and J. Hrbek (1999). Acc. Chem. Res. 32, 719.

    Google Scholar 

  4. M. Fernández-Garcia, J. C. Conesa, A. Clotet, J. M. Ricart, N. Lopez, and F. Illas (1998). J. Phys. Chem. B. 102, 141.

    Google Scholar 

  5. (a) M. Polak and L. Rubinovich (2000). Surf. Sci. Rep. 38, 127, and references therein. (b) J. H. Larsen and I. Chorkendorff (1999). Surf. Sci. Rep. 35, 163, and references therein.

    Google Scholar 

  6. G. Meitzner, D. A. Fischer, and J. H. Sinfelt (1992). Catal. Lett. 15, 219.

    Google Scholar 

  7. K. Khulbe and R. Mann (1982). Catal. Rev. Sci. Eng. 24, 311.

    Google Scholar 

  8. (a) J. C. Harberts, A. F. Bourgonje, J. J. Stephan, and V. Ponec (1977). J. Catal. 47, 92. (b) C. Benndorf, K. H. Gressmann, J. Kessler, W. Kirstein, and F. Thieme (1979). Surf. Sci. 85, 389. (c) K. Y. Yu, D. T. Ling, and W. E. Spicer (1976). J. Catal. 44, 373. (d) C. R. Helms, K. Y. Yu, and W. E. Spicer (1975). Surf. Sci. 52, 217.

    Google Scholar 

  9. M. T. Tavares, I. Alstrup, C. A. Bernardo, and J. R. Rostrup-Nielsen (1994). J. Catal. 147, 525.

    Google Scholar 

  10. M. T. Tavares, I. Alstrup, C. A. Bernardo, and J. R. Rostrup-Nielsen (1996). J. Catal. 158, 402.

    Google Scholar 

  11. J. Nerlov and I. Chorkendorff (1999). J. Catal. 181, 271.

    Google Scholar 

  12. P. S. Kumbhar, R. A. Rajadhyaksha, and R. Vetrievel (1992). J. Chem. Soc. Faraday Trans. 88, 1165.

    Google Scholar 

  13. (a) L. Zhu and A. E. DePristo (1997). J. Catal. 167, 400. (b) L. Zhu and A. E. DePristo (1995). J. Chem. Phys. 102, 5342. (c) L. Yang and A. E. DePristo (1994). J. Catal. 148, 575. (d) L. Zhu, K. S. Liang, B. Zhang, J. S. Bradley, and A. E. DePristo (1997). J. Catal. 167, 412. (e) L. Zhu, R. Wang, T. S. King, and A. E. DePristo (1997). J. Catal. 167, 408.

    Google Scholar 

  14. (a) J. C. Calabrese, L. F. Dahl, A. Cavalieri, P. Chini, G. Longoni, and S. Martinengo, (1974). J. Am. Chem. Soc. 96, 2616. (b) G. Longoni, P. Chini, and A. Cavalieri(1976). Inorg. Chem. 15, 3025. (c) A. Ceriotti, G. Longoni, and G. Piva (1989). Inorg. Synth. 26, 312.

    Google Scholar 

  15. J. K. Ruff, R. P. White, Jr., and L. F. Dahl (1971). J. Am. Chem. Soc. 93, 2159.

    Google Scholar 

  16. T. Hall and J. K. Ruff (1981). Inorg. Chem. 20, 4444.

    Google Scholar 

  17. A. Ceriotti, R. Della Pergola, G. Longoni, M. Manassero, and M. Sansoni (1984). J. Chem. Soc. Dalton Trans. 1181.

  18. A. Ceriotti, R. Della Pergola, G. Longoni, M. Manassero, N. Masciocchi, and M. Sansoni (1987). J. Organomet. Chem. 330, 237.

    Google Scholar 

  19. A. Ceriotti, R. Della Pergola, L. Garlaschelli, G. Longoni, M. Manassero, N. Masciocchi, M. Sansoni, and P. Zanello (1992). Gazz. Chim. Ital. 122, 365.

    Google Scholar 

  20. A. Fumagalli, G. Longoni, P. Chini, A. Albinati, and S. Brückner (1980). J. Organomet. Chem. 202, 329.

    Google Scholar 

  21. D. A. Nagaki, J. V. Badding, A. M. Stacy, and L. F. Dahl (1986). J. Am. Chem. Soc. 108, 3825.

    Google Scholar 

  22. A. Ceriotti, F. Demartin, G. Longoni, M. Manassero, G. Piva, G. Piro, M. Sansoni, and B. T. Heaton (1986). J. Organomet. Chem. 301, C5.

    Google Scholar 

  23. F. Demartin, C. Femoni, M. C. Iapalucci, G. Longoni, and P. Macchi (1999). Angew. Chem. Int. Ed. Engl. 38, 531.

    Google Scholar 

  24. A. Ceriotti, F. Demartin, G. Longoni, M. Manassero, M. Marchionna, G. Piva, and M. Sansoni (1985). Angew. Chem. Int. Ed. Engl. 24, 697.

    Google Scholar 

  25. J. M. Bemis and L. F. Dahl, unpublished research.

  26. (a) M. Kawano, J. W. Bacon, C. F. Campana, and L. F. Dahl (1996). J. Am. Chem. Soc. 118, 7869. (b) M. Kawano, J. W. Bacon, C. F. Campana, B. E. Winger, J. D. Dubek, S. A. Sirchiö, S. L. Scruggs, U. Geiser, and L. F. Dahl (2001). Inorg. Chem. 40.

    Google Scholar 

  27. M. A. Kozee and L. F. Dahl, manuscript in preparation.

  28. C. Femoni, M. C. Iapalucci, G. Longoni, P. H. Svensson, and J. Wolowska (2000). Angew. Chem. Int Ed. 39, 1635.

    Google Scholar 

  29. N. T. Tran, M. Kawano, D. R. Powell, and L. F. Dahl (2000). J. Chem. Soc., Dalton Trans. 4138.

  30. M. Kawano and L. F. Dahl, submitted for publication.

  31. J. M. Bemis and L. F. Dahl (1997). J. Am. Chem. Soc. 119, 4545.

    Google Scholar 

  32. (a) A. J. Whoolery and L. F. Dahl (1991). J. Am. Chem. Soc. 113, 6683. (b) A. J. Whoolery Johnson, B. Spencer, and L. F. Dahl (1994). Inorg. Chim. Acta 227, 269.

    Google Scholar 

  33. N. T. Tran, M. Kawano, R. K. Hayashi, D. R. Powell, C. F. Campana, and L. F. Dahl (1999). J. Am. Chem. Soc. 121, 5945.

    Google Scholar 

  34. (a) I. D. Salter (1989). Adv. Organomet. Chem. 29, 249. (b) I. D. Salter, in E. W. Abel, F. G. A. Stone, and G. Wilkinson (eds.), Comprehensive Organometallic Chemistry II (Elsevier, Terrytown, New York, 1995), Vol. 10, in R. D. Adams (ed.), Chap. 5, p. 255. (c) I. D. Salter, in P. Braunstein, L. A. Oro, and P. R. Raithby (eds.), Metal Clusters in Chemistry (Wiley–VCH, New York, 1999), Vol. 1, p. 509.

    Google Scholar 

  35. (a) H. A. Mirza, J. J. Vittal, and R. J. Puddephatt (1991). J. Chem. Soc. Chem. Commun. 309. (b) H. A. Mirza, J. J. Vittal, R. J. Puddephatt, C. S. Frampton, L. Manojlovíc-Muir, W. Xia, and R. H. Hill (1993). Organometallics 12, 2767.

  36. M. J. Freeman, A. G. Orpen, and I. D. Salter (1987). J. Chem. Soc. Dalton Trans. 379.

  37. (a) S. S. D. Brown, S. Hudson, and I. D. Salter (1987). J. Chem. Soc. Dalton Trans. 1967. (b) S. S. D. Brown, I. D. Salter, and B. M. Smith (1985). J. Chem. Soc. Chem. Commun. 1439.

  38. (a) G. Doyle, K. A. Eriksen, and D. van Engen (1985). J. Am. Chem. Soc. 107, 7914. (b) G. Doyle, K. A. Eriksen, and D. van Engen (1986). J. Am. Chem. Soc. 108, 445. (c) G. Doyle, B. T. Heaton, and E. Occhiello (1985). Organometallics 4, 1224.

    Google Scholar 

  39. (a) P. Klüfers (1984). Angew. Chem. Int. Ed. Engl. 23, 307. (b) P. Klüfers (1985). Angew. Chem. Int. Ed. Engl. 24, 70.

    Google Scholar 

  40. M. Achternbosch, H. Braun, R. Fuchs, P. Klüfers, A. Selle, and U. Wilhelm (1990). Angew. Chem. Int. Ed. Engl. 29, 783.

    Google Scholar 

  41. (a) J. A. Howard, R. Sutcliffe, and B. Mile (1985). Surf. Sci. 156, 214. (b) B. Zhuang, B. Pan, L. Huang, and P. Yu (1994). Inorg. Chim. Acta. 227, 119.

    Google Scholar 

  42. R. W. Broach, L. F. Dahl, G. Longoni, P. Chini, A. J. Schultz, and J. M. Williams (1978). ACS Adv. Chem. Ser. 167, 93.

    Google Scholar 

  43. A. Ceriotti, P. Chini, R. D. Pergola, and G. Longoni (1983). Inorg. Chem. 22, 1595.

    Google Scholar 

  44. P. Chini, G. Longoni, M. Manassero, and M. Sansoni (1977). Abstracts of the Eighth Meeting of the Italian Association of Crystallography, Ferrara, Commun. 34.

  45. (a) A. F. Masters and J. T. Meyer (1995). Polyhedron 14, 339. (b) J. K. Beattie, A. F. Masters, and J. T. Meyer (1995). Polyhedron 14, 829.

    Google Scholar 

  46. (a) G. Longoni and M. C. Iapalucci, in G. Schmid (ed.), Clusters and Colloids: From Theory to Applications (VCH, New York, 1994), p. 91. (b) A. Ceriotti, R. D. Pergola, and L. Garlaschelli, in L. J. de Jongh (ed.), Physics and Chemistry of Metal Cluster Compounds (Kluwer Academic, Dordrecht, The Netherlands, 1994), Chap. 2, p. 41.

    Google Scholar 

  47. (a) A. Ceriotti, G. Longoni, M. Manassero, N. Masciocchi, G. Piro, L. Resconi, and M. Sansoni (1985). J. Chem. Soc. Chem. Commun. 1402. (b) A. Ceriotti, A. Fait, G. Longoni, G. Piro, L. Resconi, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni (1986). J. Am. Chem. Soc. 108, 5370. (c) A. Ceriotti, A. Fait, G. Longoni, G. Piro, F. Demartin, M. Manassero, N. Masciocchi, and M. Sansoni (1986). J. Am. Chem. Soc. 108, 8091.

  48. (a) B. K. Teo and H. Zhang (1990). Polyhedron 9, 1985, and references therein. (b) B. K. Teo, H. Zhang, Y. Kean, H. Dang, and X. Shi (1993). J. Chem. Phys. 99, 2929.

    Google Scholar 

  49. (a) D. M. P. Mingos (1985). J. Chem. Soc. Chem. Commun. 1352. (b) D. M. P. Mingos and L. Zhenyang (1988). J. Chem. Soc. Dalton Trans. 1657.

  50. N. T. Tran, M. Kawano, D. R. Powell, and L. F. Dahl, submitted for publication.

  51. D. A. van Leeuwen, J. M. van Ruitenbeek, L. J. de Jongh, A. Ceriotti, G. Pacchioni, O. D. Häberlen, and N. Rösch (1994). Phys. Rev. Lett. 73, 1432, and references therein.

    Google Scholar 

  52. B. J. Pronk, H. B. Brom, L. J. de Jongh, G. Longoni, and A. Ceriotti (1986). Solid State Commun. 54, 349.

    Google Scholar 

  53. (a) S. H. Strauss (2000). J. Chem. Soc. Dalton Trans. 1, and references therein. (b) J. J. Rack, J. D. Webb, and S. H. Strauss (1996). Inorg. Chem. 35, 277, and references therein. (c) J. J. Rack and S. H. Strauss (1997). Catal. Today 36, 99. (d) K. G. Caulton, G. Davies, and E. M. Holt (1990). Polyhedron 9, 2319, and references therein. (e) E. I. Solomon, P. M. Jones, and J. A. May (1993). Chem. Rev. 93, 2623.

    Google Scholar 

  54. (a) M. R. Churchill, B. G. DeBoer, F. J. Rotella, O. M. Abu Salah, and M. I. Bruce (1975). Inorg. Chem. 14, 2051. (b) M. Pasquali, F. Marchetti, and C. Floriani (1978). Inorg. Chem. 17, 1684. (c) M. Pasquali, C. Floriani, and A. Gaetani-Manfredotti (1981). Inorg. Chem. 20, 3382. (d) M. Pasqueli, G. Marini, C. Floriani, A. Gaetani-Manfredotti, and C. Guastini (1980). Inorg. Chem. 19, 2525. (e) J. S. Thompson and J. F. Whitney (1984). Inorg. Chem. 23, 2813. (f ) L. Stamp and H. T. Dieck (1987). Inorg. Chim. Acta 129, 107. (g) W. Kläui, G. Lenders, B. Hessner, and K. Evertz (1988). Organometallics 7, 1357. (h) H. V. R. Diaz and H.-L. Lu (1995). Inorg. Chem. 34, 5380. (i) C. Lopes, M. Hakansson, and S. Jagner (1997). Inorg. Chem. 36, 3232.

  55. R. L. Geerts, J. C. Huffman, K. Folting, T. H. Lemmen, and K. G. Caulton (1983). J. Am. Chem. Soc. 105, 3503.

    Google Scholar 

  56. (a) R. R. Gagné, J. L. Allison, R. S. Gall, and C. A. Koval (1977). J. Am. Chem. Soc. 99, 7170. (b) R. R. Gagné (1976). J. Am. Chem. Soc. 98, 6709.

    Google Scholar 

  57. M. Pasquali, C. Floriani, G. Venturi, A. Gaetani-Manfredotti, and A. Chiesi-Villa (1982). J. Am. Chem. Soc. 104, 4092, and references therein.

    Google Scholar 

  58. G. Doyle, K. A. Eriksen, M. Modrick, and G. Ansell (1982). Organometallics 1, 1613.

    Google Scholar 

  59. C. D. Desjardins, D. B. Edwards, and J. Passmore (1979). Can. J. Chem. 57, 2714.

    Google Scholar 

  60. S. M. Ivanova, S. V. Ivanov, S. M. Miller, O. P. Anderson, K. A. Solntsev, and S. H. Strauss (1999). Inorg. Chem. 38, 3756.

    Google Scholar 

  61. F. Aubke and C. Wang (1994). Coord. Chem. Rev. 137, 483.

    Google Scholar 

  62. A. S. Goldman and K. Krogh-Jespersen (1996). J. Am. Chem. Soc. 118, 12159.

    Google Scholar 

  63. M. Hakansson and S. Jagner (1990). Inorg. Chem. 29, 5241.

    Google Scholar 

  64. F. Meyer, Y.-M. Chem, and P. B. Armentrout (1995). J. Am. Chem. Soc. 117, 4071.

    Google Scholar 

  65. G. Doyle, K. A. Eriksen, and D. Van Engen (1985). Organometallics 4, 877.

    Google Scholar 

  66. L. Carlton, W. E. Lindsell, K. J. McCullough, and P. N. Preston (1983). J. Chem. Soc. Chem. Commun. 216.

  67. G. Doyle, K. A. Eriksen, and D. Van Engen (1985). Organometallics 4, 2201.

    Google Scholar 

  68. S. S. D. Brown, S. Hudson, I. D. Salter, and M. McPartlin (1987). J. Chem. Soc. Dalton Trans. 1967.

  69. M. L. Buhl, G. J. Long, and G. Doyle (1993). J. Organomet. Chem. 461, 187.

    Google Scholar 

  70. K. Albert, K. M. Neyman, G. Pacchioni, and N. Rösch (1996). Inorg. Chem. 35, 7370.

    Google Scholar 

  71. (a) V. G. Albano, F. Azzaroni, M. C. Iapalucci, G. Longoni, M. Monari, S. Mulley, D. M. Proserpio, and A. Sironi (1994). Inorg. Chem. 33, 5320. (b) V. G. Albano, F. Calderoni, M. C. Iapalucci, G. Longoni, and M. Monari (1995). J. Chem. Soc. Chem. Commun. 433.

    Google Scholar 

  72. R. B. King (1994). Inorg. Chim. Acta 227, 207.

    Google Scholar 

  73. (a) T. H. Lemmen, L. C. Huffman, and K. G. Caulton (1986). Angew. Chem. Int. Ed. Engl. 25, 262. (b) P. A. Leach, S. J. Geib, and N. J. Cooper (1992). Organometallics 11, 4367. (c) F. Calderazzo, G. Pampaloni, U. Englert, and J. Strä hle (1990). J. Organomet. Chem. 383, 45. (d) F. Bachechi, J. Ott, and L. M. Venanzi (1985). J. Am. Chem. Soc. 107, 1760. (e) A Antinolo, J. K. Burdett, B. Chaudret, O. Eisenstein, M. Fajardo, F. Jalon, F. Lahoz, J. A. Lopex, and A. Otero (1990). J. Chem. Soc. Chem. Commun. 17.

    Google Scholar 

  74. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Google Scholar 

  75. (a) R. Bouwman and W. M. H. Sachtler (1970). J. Catal. 19, 127. (b) R. Bouwman, G. J. M. Lippits, and W. M. H. Sachtler (1972). J. Catal. 25, 350. (c) F. L. Williams and M. Boudart (1973). J. Catal. 30, 438.

    Google Scholar 

  76. (a) J. C. Tracy (1972). J. Chem. Phys. 56, 2748. (b) J. C. Tracy (1972). J. Chem. Phys. 56, 2736. (c) K. Christmann, O. Schober, and J. G. Ertl (1974). J. Chem. Phys. 60, 4719. (d) K. Y. Yu, D. T. Ling, and W. E. Spicer (1976). J. Catal. 44, 373.

    Google Scholar 

  77. D. M. P. Mingos and L. Zhenyang (1989). Comments Inorg. Chem. 9, 95.

    Google Scholar 

  78. (a) D. A. Nagaki, Ph.D. thesis (University of Wisconsin, Madison, 1986). (b) D. A. Nagaki, L. D. Lower, G. Longoni, P. Chini, and L. F. Dahl (1986). Organometallics 5, 1764. (c) G. Longoni and P. Chini (1976). Inorg. Chem. 15, 3029.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mlynek, P.D., Kawano, M., Kozee, M.A. et al. First-Known High-Nuclearity Copper–Nickel Carbonyl Cluster: [CuxNi35−x(CO)40]5− (with x=3 or 5) Containing an Unprecedented 35-Atom Three-Layer hcp Triangular Stacking Metal-Core Geometry. Journal of Cluster Science 12, 313–338 (2001). https://doi.org/10.1023/A:1016699702233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016699702233

Navigation