Skip to main content
Log in

The computation of consistent initial values for nonlinear index-2 differential–algebraic equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The computation of consistent initial values for differential–algebraic equations (DAEs) is essential for starting a numerical integration. Based on the tractability index concept a method is proposed to filter those equations of a system of index-2 DAEs, whose differentiation leads to an index reduction. The considered equation class covers Hessenberg-systems and the equations arising from the simulation of electrical networks by means of Modified Nodal Analysis (MNA). The index reduction provides a method for the computation of the consistent initial values. The realized algorithm is described and illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Amodio and F. Mazzia, An algorithm for the computation of consistent initial values for differential-algebraic equations, Numer. Algorithms 19 (1998) 13–23.

    Google Scholar 

  2. K.E. Brenan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (North-Holland, New York, 1989).

    Google Scholar 

  3. S.L. Campbell and C.W. Gear, The index of general nonlinear DAEs, Numer. Math. 72 (1995) 173-196.

    Google Scholar 

  4. D. Estévez Schwarz, Topological analysis for consistent initialization in circuit simulation, Preprint 99-3, Humboldt-Universität, Berlin (1999).

    Google Scholar 

  5. D. Estévez Schwarz, Consistent initial values for DAE system in circuit simulation, Preprint 99-5, Humboldt-Universität, Berlin (1999).

    Google Scholar 

  6. D. Estévez Schwarz, Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation, Ph.D. thesis, Humboldt-Universität, Berlin (2000) in preparation.

    Google Scholar 

  7. D. Estévez Schwarz and C. Tischendorf, Structural analysis for electric circuits and consequences for MNA, Internat. J. Circuit Theory Appl. (1999) to appear.

  8. D. Estévez Schwarz, U. Feldmann, R. März, S. Sturtzel and C. Tischendorf, Finding beneficial DAE structures in circuit simulation, Preprint 00-7, Humboldt-Universität, Berlin (2000).

    Google Scholar 

  9. C.W. Gear, Differential-algebraic equation index transformations, SIAM J. Sci. Statist. Comput. 9 (1988) 39–47.

    Google Scholar 

  10. C.W. Gear, G.K. Gupta and B.J. Leimkuhler, Automatic integration of Euler-Lagrange equations with constraints, J. Comput. Appl. Math. 12/13 (1985) 77–90.

    Google Scholar 

  11. E. Griepentrog, Index reduction methods for differential-algebraic equations, in: Seminarbericht 921, eds. E. Griepentrog, M. Hanke and R. März (Humboldt-Universität, Berlin, 1992) pp. 14–29.

    Google Scholar 

  12. E. Griepentrog and R. März, Differential-Algebraic Equations and Their Numerical Treatment, Teubner-Texte zur Mathematik, Vol. 88 (Teubner, Leipzig, 1986).

    Google Scholar 

  13. M. Günther and U. Feldmann, CAD-based electric-circuitmodeling in industry, I. Mathematical structure and index of network equations, Surveys Math. Indust. 8 (1999) 97–129.

    Google Scholar 

  14. E. Hairer, Ch. Lubich and M. Roche, The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Lecture Notes in Mathematics, Vol. 1409 (Springer, New York, 1989).

    Google Scholar 

  15. B. Hansen, Computing consistent initial values for nonlinear index-2 differential-algebraic equations, in: Seminarbericht 92-1, eds. E. Griepentrog, M. Hanke and R. März (Humboldt-Universität, Berlin, 1992) pp. 142–157.

    Google Scholar 

  16. R. Lamour, A well-posed shooting method for transferable DAEs, Numer. Mathematik 59 (1991) 815–829. D. Estévez Schwarz, R. Lamour / Consistent initial values 75

    Google Scholar 

  17. R. Lamour, A shooting method for fully implicit index-2 differential-algebraic equations, SIAM J. Sci. Comput. 18 (1997) 94–114.

    Google Scholar 

  18. B. Leimkuhler, Approximation methods for the consistent initialization of differential-algebraic equations, University of Illinois (1988).

  19. B. Leimkuhler, L.R. Petzold and C.W. Gear, Approximation methods for the consistent initialization of differential-algebraic equations, SIAM J. Numer. Anal. 28 (1991) 205–226.

    Google Scholar 

  20. R. März, Numerical methods for differential-algebraic equations, Acta Numer. (1992) 141–198.

  21. R. März, Analysis and numerics of DAEs, Special lecture, Humboldt-Universität, Berlin (1998).

    Google Scholar 

  22. R. März, EXTRA-ordinary differential equations: Attempts to an analysis of differential-algebraic systems, in: Progress in Mathematics, Vol. 168 (Birkhäuser, Boston, MA, 1998) pp. 313–334.

    Google Scholar 

  23. R. März and A.R. Rodríguez Santiesteban, Analyzing the stability behaviour of DAE solutions and their approximations, Preprint 99-2, Humboldt-Universität, Berlin (1999).

    Google Scholar 

  24. R. März and C. Tischendorf, Recent results in solving index-2 differential-algebraic equations in circuit simulation, SIAM J. Sci. Statist. Comput. 18(1) (1997) 139–159.

    Google Scholar 

  25. C.C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM J. Sci. Statist. Comput. 9 (1988) 213–231.

    Google Scholar 

  26. C. Tischendorf, Solution of index-2 differential-algebraic equations and its application in circuit simulation, Ph.D. thesis, Humboldt-Universität zu Berlin (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estévez Schwarz, D., Lamour, R. The computation of consistent initial values for nonlinear index-2 differential–algebraic equations. Numerical Algorithms 26, 49–75 (2001). https://doi.org/10.1023/A:1016696413810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016696413810

Navigation