Skip to main content
Log in

Comparison of friction measurements using the atomic force microscope and the surface forces apparatus: the issue of scale

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Results are presented of lateral force measurements using the atomic force microscope (AFM) and the surface forces apparatus (SFA). Two different probes are used in the AFM measurements; a sharp silicon nitride tip (radius R≈20 nm) and a glass ball (R≈15 μm). The lateral force is measured between the (silicon nitride or glass) probe and a mica surface which has been coated by a thin lubricant film. In the SFA, a thin lubricant film separates two molecularly smooth mica surfaces (R≈1 cm) which are slid relative to each other. Perfluoropolyether (PFPE) and polydimethylsiloxane (PDMS) were used as the lubricant films. In the SFA where the contact diameter is largest, the PFPE film shows much lower friction than PDMS. As the size of the probe decreases, the difference in the measured friction decreases. For sharp AFM tips, no clear distinction between the tribological properties of the films can be made. Hence, the measured coefficient of friction varies according to the length scale probed, at least for small dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Claredon Press, Oxford, 1964).

    Google Scholar 

  2. I.L. Singer and H.M. Pollock, eds., Fundamentals of Friction: Macroscopic and Microscopic Processes, Vol. 220, NATO ASI Ser. E, Appl. Sci. (Kluwer Academic, Dordrecht, 1992).

    Google Scholar 

  3. J.N. Israelachvili, A.M. Homola and P.M. McGuiggan, Science 240 (1988) 189.

    Google Scholar 

  4. M.L. Gee, P.M. McGuiggan, J.N. Israelachvili and A.M. Homola, J. Chem. Phys. 93 (1990) 1895.

    Google Scholar 

  5. P.A. Thompson and M.O. Robbins, Science 253 (1991) 916.

    Google Scholar 

  6. S. Granick, Science 252 (1991) 1374.

    Google Scholar 

  7. J.N. Israelachvili and D. Tabor, Wear 24 (1973) 386.

    Google Scholar 

  8. C.M. Mate, Phys. Rev. Lett. 68 (1992) 3323.

    Google Scholar 

  9. N.A. Burnham, A.J. Kulik, F. Oulevey, C. Mayencourt, D. Gourdon, E. Dupas and G. Gremaud, in: Micro/Nanotribology and its Applications (Kluwer Academic, Boston, 1997).

    Google Scholar 

  10. R.M. Overney, L. Guo, H. Totsuka, M. Rafailovich, J. Sokolov and S.A. Schwarz, Mater. Res. Soc. Symp. Proc. 464 (1997) 133.

    Google Scholar 

  11. Y. Liu, D.F. Evans, Q. Song and D.W. Grainger, Langmuir 12 (1996) 1235.

    Google Scholar 

  12. R.W. Carpick and M. Salmeron, Chem. Rev. 97 (1997) 1163.

    Google Scholar 

  13. R.G. Horn, D.T. Smith and W. Haller, Chem. Phys. Lett. 162 (1989) 404.

    Google Scholar 

  14. S. Steinberg, W. Ducker, G. Vigil, C. Hyukjin, C. Grank, W. Tseng, D.R. Clarke and J.N. Israelachvili, Science 260 (1993) 656.

    Google Scholar 

  15. R.G. Horn, D.R. Clarke and M.T. Clarkson, J. Mater. Res. 3 (1988) 413.

    Google Scholar 

  16. W.A. Ducker, T.J. Senden and R.M. Pashley, Nature 353 (1991) 239.

    Google Scholar 

  17. H. Yoshizawa, Y.L. Chen and J. Israelachvili, J. Phys. Chem. 97 (1993) 4128.

    Google Scholar 

  18. D.F. Ogletree, R.W. Carpick and M. Salmeron, Rev. Sci. Instrum. 67 (1996) 3299.

    Google Scholar 

  19. J.N. Israelachvili and G.E. Adams, J. Chem. Soc. Faraday Trans I 74 (1978) 975.

    Google Scholar 

  20. A.W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  21. G.S. Blackman, C.M. Mate and M.R. Philpott, Phys. Rev. Lett. 65 (1990) 2270.

    Google Scholar 

  22. R.C. Weast, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1978).

    Google Scholar 

  23. H. Hertz, Miscellaneous Papers (Macmillan, London, 1896) p. 146.

    Google Scholar 

  24. D. Smith, personal communication.

  25. S.J. O'Shea, M.E. Welland and T. Rayment, Appl. Phys. Lett. 61 (1992) 2240.

    Google Scholar 

  26. A.B. Tutein, S.J. Stuart and J.A. Harrison, J. Phys. Chem. B 103 (1999) 11357.

    Google Scholar 

  27. A.M. Homola, J.N. Israelachvili, M.L. Gee and P.M. McGuiggan, J. Tribol. 111 (1989) 675.

    Google Scholar 

  28. R.W. Carpick, D.F. Ogletree and M. Salmeron, Appl. Phys. Lett. 70 (1997) 1548.

    Google Scholar 

  29. F. Mugele and M. Salmeron, Phys. Rev. Lett. 84 (2000) 5796.

    Google Scholar 

  30. A.B. Tutein, S.J. Stuart and J.A. Harrison, Langmuir 16 (2000) 291.

    Google Scholar 

  31. N.D. Shinn, T.M. Mayer and T.A. Michalske, Tribol. Lett. 7 (1999) 67.

    Google Scholar 

  32. R.M. Overney, H. Takano, M. Fujihira, E. Meyer and H.-J. Guntherodt, Thin Solid Films 240 (1994) 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuiggan, P.M., Zhang, J. & Hsu, S.M. Comparison of friction measurements using the atomic force microscope and the surface forces apparatus: the issue of scale. Tribology Letters 10, 217–223 (2001). https://doi.org/10.1023/A:1016692704748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016692704748

Navigation