Skip to main content
Log in

New artificial siderophores based on a monosaccharide scaffold

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

New artificial catecholate siderophores with methyl α-d-glucopyranoside as scaffold were synthesized. The dihydroxy- or di(acetoxy)benzoyl moieties were attached either directly or via aminopropyl spacer groups, to the carbohydrate scaffold. The siderophore activity of the prepared siderophore analogs was examined by a growth promotion assay using various Gram-negative bacteria and mycobacteria and by the CAS-assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama M, Ikeda T. 1995 Design and synthesis of artificial siderophores: Lysine-based triscatecholate ligands as a model for enterobactin. Chem Lett 849–850.

  • Bazin H, Bouchu A, Descotes A. 1995 Hydrolysis of cyanoethylated carbohydrates: synthesis of new carbocyclic derivatives of sucrose, D-glucose and D-fructose. J Carbohydr Chem 14, 1187–1207.

    Google Scholar 

  • Bergeron RJ, Wiegand J, Brittenham GM. 1999 HBED: The continuing development of a potential alternative to deferoxamine for iron-chelating therapy. Blood 93, 370–375.

    PubMed  Google Scholar 

  • Cabantchik ZI. 1995 Iron chelators as antimalarials: The biochemical basis of selective cytotoxicity. Parasitology Today 11, 74–78.

    Google Scholar 

  • Coleman AW, Lin C-C, Miocque M. 1992 Synthese und Komplexierungsverhalten eines auf Cyclodextrin beruhenden Siderophors. Angew Chem 104, 1402–1404.

    Google Scholar 

  • Corbin JL, Bulen WA. 1969 The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-Di-(2,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry 8, 757–762.

    PubMed  Google Scholar 

  • Corey EJ, Hurt SD. 1977 Synthesis of the carbocyclic analog of enterobactin. Tetrahedr Lett, 3923–3924.

  • Dax K, Wolflehner W, Weidmann H. 1978 Eine einfache Enttritylierungsmethode. Carbohydr Res 65, 132–138.

    Google Scholar 

  • Debost J-L, Gelas J, Horton D, Mols O. 1984 Preparative acetonation of pyranoid, vicinal trans-glycols under kinetic control: methyl 2,3;4,6-di-O-isopropylidene—and α-δ-D-glucopyranoside. Carbohydr Res 125, 329–335.

    Google Scholar 

  • Egbe AMD, 1995 Synthetic siderophores based on polyhydroxy compounds. Diploma work Friedrich-Schiller-Universität Jena, Germany.

    Google Scholar 

  • Hanessian S, Delorme D, Tyler PC, Demailly G, Chapleur Y. 1983 Total synthesis of the C-3-C-17 segment of boromycin. Can J Chem. 61, 634–637.

    Google Scholar 

  • Heinisch L, Ulbricht H, Willitzer H, Hanschke KG, Tresselt D, Möllmann U, Eckardt K, Haupt I. 1992 Synthesis and antibacterial activity of benzoylaminoacyl-penicillins and related compounds with and without acylated catechol substituents. Arzneim-Forsch/Drug Res. 42, 668–673.

    Google Scholar 

  • Ho WM, Wong NC. 1995 Chiral liquid crystalline compounds from D-(C)-glucose. Tetrahedron 51 (27), 7373–7388.

    Google Scholar 

  • Miller MJ, Malouin F. 1993 Microbial iron chelators as drug delivery agents-The rational design and synthesis of siderophore drug conjugates. Acc Chem Res 26, 241–249.

    Google Scholar 

  • O'Brien IG, Gibson F. 1970 The structure of enterobactin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. Biochim Biophys Acta 215, 393–402.

    PubMed  Google Scholar 

  • Pollack JR, Neilands JB. 1970 Enterobactin, an iron transport compound from Salmonella typhimurium. Biochim Biophys Res Commun 38, 989–992.

    Google Scholar 

  • Pradines B, Ramiandrasoa F, Basco LK, Bricard L, Kunesch G, Le-Bras J. 1996 In vitro activities of novel catecholate siderophores against Plasmodium falciparum. Antimicrob Agents Chemother 40, 2094–2098.

    PubMed  Google Scholar 

  • Rastetter WH, Erickson TJ, Venuti MC. 1981 Synthesis of iron chelators. Enterobactin, enantioenterobactin, and a chiral analogue. J Org Chem 46, 3579–3590.

    Google Scholar 

  • Reissbrodt R, Heinisch L, Möllmann U, Rabsch W, Ulbricht H. 1993 Growth promotion of synthetic catecholate derivatives on Gram-negative bacteria. BioMetals 6, 155–162.

    Google Scholar 

  • Shanzer A, Libman J. 1998 Biomimetic siderophores: From structural probes to diagnostic tools. In:. Sigel A and Sigel H, eds. Iron Transport and Storage in Microorganisms, Plants and Animals, Vol. 35 of Metal Ions in Biological Systems. New York: M Dekker Inc.: 329–354.

    Google Scholar 

  • Schnabelrauch M, Egbe DAM, Heinisch L, Reissbrodt R, Möllmann U. 1998 Novel catecholate-type siderophore analogs based on a myo-inositol scaffold. BioMetals 11, 243–251.

    PubMed  Google Scholar 

  • Schwyn B, Neilands JB. 1987 Universal chemical assay for the detection and determination of siderophores, Anal Biochem 160, 47–56.

    PubMed  Google Scholar 

  • Schumann G, Moellmann U, Heinemann I. Mutants of Mycobacterium species and their use for screening of antibiotic vectors. Patent application DE 19817021.9. (17.4.1998).

  • Tse B, Kishi Y. 1993 Chiral analogs of enterobactin with hydrophilic or lipophilic properties. J Am Chem Soc 115, 7892–7893.

    Google Scholar 

  • Weitl FL, Raymond KN. 1979 Ferric Ion Sequestering Agents. 1. Hexadentate O-bonding N,N',N”-tris(2,3-dihydroxybenzoyl) derivatives of 1,5,9-triazacyclotridecane and 1,3,5-triaminomethylbenzene. J Am Chem Soc 101, 2728–2731.

    Google Scholar 

  • Wittmann S, Scherlitz-Hofmann I, Möllmann U, Ankel-Fuchs D, Heinisch L. 1999 8-Acyloxy-1,3-benzoxazine-2,4-diones as Siderophore Components for Antibiotics. Arzneim-Forsch/Drug Res., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heggemann, S., Schnabelrauch, M., Klemm, D. et al. New artificial siderophores based on a monosaccharide scaffold. Biometals 14, 1–11 (2001). https://doi.org/10.1023/A:1016689807111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016689807111

Navigation