Skip to main content
Log in

The battle of the sexes after fertilization: behaviour of paternal and maternal chromosomes in the early mammalian embryo

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In the early diploid mammalian embryo, a father's chromosomes don't mix with the mother's until some time after fertilization. This topological genome separation is preserved up to the four-cell embryo stage and then gradually disappears. Unlike maternal DNA, sperm DNA arrives in an almost crystalline structure, heavily modified with methylcytosines (MeCs), which keep genes inactive. Compartmentalization of the nucleus according to parental origin may make it easier for the cellular machinery of the fertilized egg to revive the paternal chromosomes and to control paternal gene expression. Active zygotic demethylation of the paternal genome by a putative demethylase in the egg is a striking example for the battle of the sexes at the genomic level and beyond the single-gene level. It has important implications for genomic imprinting, and the establishment of genetic totipotency in fertilized eggs and in somatic cells during mammalian cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adenot PG, Mercier Y, Renard J-P, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1–cell mouse embryos. Development 124: 4615–4625.

    PubMed  CAS  Google Scholar 

  • Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181: 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (1982) A model for the structure of chromatin in mammalian sperm. J Cell Biol 93: 298–305.

    Article  PubMed  CAS  Google Scholar 

  • Bouniol-Baly C, Nguyen E, Besombes D, Debey P (1997) Dynamic organization of DNA replication in one-cell mouse embryos: relationship to transcriptional activation. Exp Cell Res 236: 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Brannan CI, Bartolomei MS (1999) Mechanisms of genomic imprinting. Curr Opin Genet Dev 9: 164–170.

    Article  PubMed  CAS  Google Scholar 

  • Cardoso MC, Leonhardt H (1999) DNA methyltransferase is actively retained in the cytoplasm during early development. J Cell Biol 147: 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Cervoni N, Bhattacharya S, Szyf M(1999) DNA demethylase is a processive enzyme. J Biol Chem 274: 8363–8366.

    Article  PubMed  CAS  Google Scholar 

  • Chaillet JR (1994) Genomic imprinting: lessons from mouse transgenes. Mutat Res 307: 441–449.

    PubMed  CAS  Google Scholar 

  • Constancia M, Pickard P, Kelsey G, Reik W (1998) Imprinting mechanisms. Genome Res 8: 881–900.

    PubMed  CAS  Google Scholar 

  • Corley-Smith GE, Lim CJ, Brandhorst BP (1996) Production of androgenetic zebrafish (Danio rerio). Genetics 142: 1265–1276.

    PubMed  CAS  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P et al. (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency. Proc Natl Acad Sci USA 96: 14412–14417.

    Article  PubMed  CAS  Google Scholar 

  • Howlett SK, Reik W(1991)Methylation levels of maternal and paternal genomes during preimplantation development. Development 113: 119–127.

    PubMed  CAS  Google Scholar 

  • Hsieh C-L (1999) In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol 19: 8211–8218.

    PubMed  CAS  Google Scholar 

  • Hsieh C-L (2000) Dynamics of DNA methylation pattern. Curr Opin Genet Dev 10: 224–228.

    Article  PubMed  CAS  Google Scholar 

  • Jost JP (1993) Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5–methylcytidine. Proc Natl Acad Sci USA 90: 4684–4688.

    Article  PubMed  CAS  Google Scholar 

  • Kafri T, Gao X, Razin A (1993) Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA 90: 10558–10562.

    Article  PubMed  CAS  Google Scholar 

  • Laurincik J, Hyttel P, Kopecny V (1994) DNA synthesis and pronucleus development in pig zygotes obtained in vivo: an autoradiographic and ultrastructural study. Mol Reprod Dev 40: 325–332.

    Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Lei H, Oh SP, Okano M et al. (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122: 3195–3205.

    PubMed  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    Article  PubMed  CAS  Google Scholar 

  • Macleod D, Clark VH, Bird A (1999) Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nature Genet 23: 139–140.

    Article  PubMed  CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000a) Demethylation of the zygotic paternal genome. Nature 403: 501–502.

    PubMed  CAS  Google Scholar 

  • Mayer W, Smith A, Fundele R, Haaf T (2000b) Spatial separ-ation of parental genomes in preimplantation mouse embryos. J Cell Biol 148: 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Mayer W, Fundele R, Haaf T (2000c) Spatial separation of par-ental genomes during mouse interspecific (Mus musculusM. spretus) spermiogenesis. Chromosome Res 8: 555–558.

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryo-genesis requires both the maternal and paternal genomes. Cell 37: 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extra-embryonic and germ cell lineages during mouse embryo development. Development 99: 371–382.

    PubMed  CAS  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7: 45–49.

    PubMed  CAS  Google Scholar 

  • Moore T, Reik W(1996) Genetic con£ict in early development: parental imprinting in normal and abnormal growth. Rev Reprod 1: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Naish SJ, Perreault SD, Foehner AL, Zirkin BR (1987) DNA synthesis in the fertilizing hamster sperm nucleus: sperm tem-plate availibility and egg cytoplasmic control. Biol Reprod 36: 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9: 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Nonchev S, Tsanev R (1990) Protamine-histone replacement and DNA replication in the male pronucleus. Mol Reprod Dev 25: 72–76.

    Article  PubMed  CAS  Google Scholar 

  • O'hUigin C, Li WH (1992) The molecular clock ticks regularly in muroid rodents and hamsters. J Mol Evol 35: 377–384.

    Article  PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltrans-ferases. Nature Genet 19: 219–220.

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyl-transferases Dnmt3a and Dnmt3b are essential for de-novo methylation and mammalian development. Cell 99: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Olek A, Walter J (1998) The pre-implantation ontogeny of the H19 methylation imprint. Nature Genet 17: 275–276.

    Article  Google Scholar 

  • Oswald J, Engemann S, Lane N et al. (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10: 475–478.

    Article  PubMed  CAS  Google Scholar 

  • Perreault SD (1992) Chromatin remodeling in mammalian zygotes. Mutat Res 296: 43–55.

    PubMed  CAS  Google Scholar 

  • Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Genet 4: 1751–1755.

    PubMed  CAS  Google Scholar 

  • Rodman TC, Pruslin FH, Hoffmann HP, Allfrey VG (1981) Turnover of basic chromosomal proteins in fertilized eggs: a cytoimmunochemical study of events in vivo. J Cell Biol 90: 351–361.

    Article  PubMed  CAS  Google Scholar 

  • Rougier N, Bourc'his D, Gomes DMet al. (1998) Chromosome methylation patterns duringmammalian development. Genes Dev 12: 2108–2113.

    PubMed  CAS  Google Scholar 

  • Sanford JP, Clark HJ, Chapman VM, Rossant J (1987) Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes Dev 1: 1039–1046.

    PubMed  CAS  Google Scholar 

  • Schultz RM(1993) Regulation of zygotic gene activation in the mouse. BioEssays 8: 531–538.

    Article  Google Scholar 

  • Surani MAH, Barton SC, Norris ML (1986) Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45: 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Swisher JF, Rand E, Cedar H, Marie Pyle A (1998) Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Res 26: 5573–5580.

    Article  PubMed  CAS  Google Scholar 

  • Wiekowski M, Miranda M, dePamphilis ML (1993) Require-ments for promotor activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol 159: 366–378.

    Article  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Worrad DM, Ram PT, Schultz RM (1994) Regulation of gene expression in the mouse oocyte and early preimplantation embryo: developmental changes in Sp1 and TATA box-binding protein, TBP. Development 120: 2347–2357.

    PubMed  CAS  Google Scholar 

  • Xu GL, Bestor TH, Bourc'his D et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: 335–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haaf, T. The battle of the sexes after fertilization: behaviour of paternal and maternal chromosomes in the early mammalian embryo. Chromosome Res 9, 263–271 (2001). https://doi.org/10.1023/A:1016686312142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016686312142

Navigation