Skip to main content
Log in

Ruthenium Cluster Chemistry with Ph2PC6H4-4-C≡CH

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The new phosphines Ph2PC6H4-4-C≡CR [R=SiMe3 (1), H (2)] have been used to prepare Ru3(CO)9(Ph2PC6H4-4-C≡CSiMe3)3 (4) and Ru(C≡CC6H4-4-PPh2)(PPh3)2(η-C5H5) (3), respectively, the latter with a pendent phosphine. Reaction of 4 with carbonate or fluoride affords Ru3(CO)9(Ph2PC6H4-4-C≡CH)3 (5) with pendent terminal alkynyl groups, the identity of which was confirmed by a structural study. Reaction of 5 with [Ru(NCMe)(PPh3)2(η-C5H5)]PF6 or reaction of Ru3(CO)12 with 3 gives Ru3(CO)9{(Ph2PC6H4-4-C≡C)Ru(PPh3)2(η-C5H5)}3 (6). Complexes 3–6 have been studied by cyclic voltammetry. Proceeding from Ru3(CO)12 to 4 or 5 shifts the cluster-centred reduction to more negative potential and affords facile cluster-centred oxidation. Proceeding from 4/5 and 3 to 6 results in similarly-located cluster-centred reduction and peripheral ruthenium-centred oxidation, but results in a lack of observable cluster-centred oxidation. Crystal data for 5·C6H14: space group P¯1, a=12.760(1) Å, b=17.077(1) Å, c=17.924(2) Å, α=108.656(5)°, β=96.344(5)°, γ=93.523(5)°, V=3658.4(6) Å3, Z=2, R=0.078, Rw=0.105 for 5008 reflections [I>2.00σ(I)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. B. Gorman (1998). Adv. Mater. 10, 295.

    Google Scholar 

  2. M. A. Hearshaw and J. R. Moss (1999). J. Chem. Soc. Chem. Commun. 1.

  3. F. J. Stoddart and T. Welton (1999). Polyhedron 18, 3575.

    Google Scholar 

  4. C. B. Gorman, B. L. Parkhurst, W. Y. Su, and K.-Y. Chen (1997). J. Am. Chem. Soc. 119, 1141.

    Google Scholar 

  5. E. C. Constable, O. Eich, C. E. Housecroft, and L. A. Johnston (1998). Chem. Commun. 2661.

  6. E. C. Constable, C. E. Housecroft, B. Krattinger, M. Neuburger, and M. Zehnder (1999). Organometallics 18, 2565.

    Google Scholar 

  7. W. Gee, R. A. Shaw, and B. C. Smith (1967). Inorg. Synth. 9, 19.

    Google Scholar 

  8. S. Takahashi, Y. Kuroyama, K. Sonogashira, and N. Hagihara (1980). Synthesis 627.

  9. T. Blackmore, M. I. Bruce, and F. G. A. Stone (1971). J. Chem. Soc. (A) 2376.

  10. M. I. Bruce, C. M. Jensen, and N. L. Jones (1989). Inorg. Synth. 26, 259.

    Google Scholar 

  11. M. I. Bruce, J. G. Matisons, and B. K. Nicholson (1983). J. Organomet. Chem. 247, 321.

    Google Scholar 

  12. P. Coppens (ed.), The Evaluation of Absorption and Extinctions in Single-Crystal Structure Analysis, Crystallographic Computing (Indian Academy of Sciences, Bangalore, 1970).

    Google Scholar 

  13. S. Mackay, C. J. Gilmore, C. Edwards, M. Tremayne, N. Stuart, and K. Shankland, maXus Computer Program for the Solution and Refinement of Crystal Structures (Nonius, The Netherlands; MacScience, Japan; University of Glasgow, Glasgow; 2000).

    Google Scholar 

  14. teXsan: Single Crystal Structure Analysis Package (Molecular Structure Corporation, 3200 Research Forest Drive, The Woodlands, TX, 1997).

  15. P. M. Van Calcar, M. M. Olmstead, and A. L. Balch (1998). Inorg. Chim. Acta 270, 28.

    Google Scholar 

  16. M. I. Bruce and R. C. Wallis (1979). Aust. J. Chem. 32, 1471.

    Google Scholar 

  17. I. R. Whittall, M. G. Humphrey, D. C. R. Hockless, B. W. Skelton, and A. H. White (1995). Organometallics 14, 3970.

    Google Scholar 

  18. I. R. Whittall, M. G. Humphrey, A. Persoons, and S. Houbrechts (1996). Organometallics 15, 1935.

    Google Scholar 

  19. I. R. Whittall, M. P. Cifuentes, M. G. Humphrey, B. Luther-Davies, M. Samoc, S. Houbrechts, A. Persoons, G. A. Heath, and D. C. R. Hockless (1997). J. Organomet. Chem. 549, 127.

    Google Scholar 

  20. M. I. Bruce, G. Shaw, and F. G. A. Stone (1972). J. Chem. Soc. Dalton Trans. 2094.

  21. M. I. Bruce, J. G. Matisons, B. W. Skelton, and A. H. White (1983). J. Chem. Soc. Dalton Trans. 2375.

  22. M. I. Bruce, M. J. Liddell, O. bin Shawkataly, C. A. Hughes, B. W. Skelton, and A. H. White (1988). J. Organomet. Chem. 347, 207.

    Google Scholar 

  23. G. Süss-Fink, I. Godefroy, V. Ferrand, A. Neels, and H. Stoeckli-Evans (1998). J. Chem. Soc. Dalton Trans. 515.

  24. M. I. Bruce, D. C. Kehoe, J. G. Matisons, B. K. Nicholson, P. H. Rieger, and M. L. Williams (1982). J. Chem. Soc. Chem. Commun. 442.

  25. P. Lemoine (1982). Coord. Chem. Rev. 47, 55.

    Google Scholar 

  26. P. Zanello (ed.), Stereochemistry of Organometallic and Inorganic Compounds (Elsevier, Amsterdam, 1990), p. 181.

    Google Scholar 

  27. P. Zanello, S. Aime, and D. Osella (1984). Organometallics 3, 1374.

    Google Scholar 

  28. B. M. Peake, B. H. Robinson, J. Simpson, and D. J. Watson (1974). J. Chem. Soc. Chem. Commun. 945.

  29. J. E. Cyr, J. A. DeGray, D. K. Gosser, E. S. Lee, and P. H. Rieger (1985). Organometallics 4, 950.

    Google Scholar 

  30. A. J. Downard, B. H. Robinson, J. Simpson, and A. M. Bond (1987). J. Organomet. Chem. 320, 363.

    Google Scholar 

  31. J. E. Cyr and P. H. Rieger (1991). Organometallics 10, 2153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, N.T., Cifuentes, M.P., Nguyen, L.T. et al. Ruthenium Cluster Chemistry with Ph2PC6H4-4-C≡CH. Journal of Cluster Science 12, 201–221 (2001). https://doi.org/10.1023/A:1016683331367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016683331367

Navigation