Skip to main content
Log in

Behavior of Porous Titanium and Catalytically Active Electrodes Based on It in Acidic Chloride Solutions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The behavior of porous titanium and electrodes based on it, which are activated with Pt, Au, RuO2, Co3O4, and MnO2, in 20-% LiCl solution (pH –0.4 to –0.5) is studied. On porous titanium in the potential ranges 0.1 < E< 0.5 and 0.5 < E< 1.1 V (NHE), the formation of titanium hydrides and passive oxide layers, respectively, is observed; the processes decay with time. In the ranges E< 0.1 and E> 1.1 V, the dissolved oxygen reduction and chlorine evolution, respectively, are observed on porous titanium at high overpotentials. On porous titanium activated with thin-layer Pt, Au, and RuO2coatings, the functional Evs. pH dependence, which is typical for these electrocatalysts, breaks down due to the conjugate reactions of titanium oxidation. On porous titanium activated with Co3O4and MnO2, at pH below unity, chlorine evolution is observed; its rate is limited by the chlorine mass transfer into the bulk solution. Under a gas-diffusion control, the chlorine evolution rate is determined by the diffusion of absorbed hydrogen chloride. The conditions of application of porous titanium as the support for catalytically active electrodes of electrochemical sensors in acidic chloride solutions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Levinskii, M.I., Mazanko, A.F., and Novikov, I.N., Khloristyi vodorod i solyanaya kislota (Hydrogen Chloride and Hydrochloric Acid), Moscow: Khimiya, 1985.

    Google Scholar 

  2. Sbornik zakonodatel'nykh, normativnykh i metodicheskikh dokumentov dlya ekspertizy vozdukho-okhrannykh meropriyatii (Collection of Regulations on the Examination of Air Conservation Measures), Leningrad: Gidrometeoizdat, 1986.

  3. Goepel, W., Hesse, I., and Zemel, I.N., Comprehensive Survey in Eight Volumes, Berlin: VCH, 1991, vol. 2.

    Google Scholar 

  4. Kinoshita, K. and Madau, M.I., J. Electrochem. Soc., 1984, vol. 131, p. 1089.

    Google Scholar 

  5. Shmatko, A.G. and Voronina, I.V., Elektrokhimiya, 1992, vol. 27, p. 1098.

    Google Scholar 

  6. Sensoric. Gesellschaft fuer Angewandte Elektrochemie mbH. Issue 02/96.

  7. Kal'voda, R., Zyka, Ya., and Shtulik, K., Elektroanaliticheskie metody v kontrole okruzhayushchei sredy (Electroanalytical Methods in the Environmental Monitoring), Moscow: Khimiya, 1990.

    Google Scholar 

  8. Spravochnik po elektrokhimii (A Handbook on Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  9. Spravochnik khimika (A Handbook on Chemistry), Nikol'skii, B.P. et al., Eds., Leningrad: Khimiya, 1964, vol. 3, p. 204.

    Google Scholar 

  10. Pourbaix, M., Atlas d'Equilibres Electrochimiques, Paris: Gauthier-Villars, 1963.

    Google Scholar 

  11. Yakimenko, L.M., Elektrodnye materialy v prikladnoi elektrokhimii (Electrode Materials in Applied Electrochemistry), Moscow: Khimiya, 1977.

    Google Scholar 

  12. Korovin, N.V. and Kasatkin, E.V., Elektrokhimiya, 1993, vol. 29, p. 448.

    Google Scholar 

  13. Fokin, M.N., Ruskol, Yu.S., and Mosolov, A.V., Titan i ego splavy v khimicheskoi promyshlennosti (Application of Titanium and Its Alloys in the Chemical Industry), Leningrad: Khimiya, 1978.

    Google Scholar 

  14. Gladysheva, T.D., Archakov, O.V., and Podlovchenko, B.I., Elektrokhimiya, 1995, vol. 31, p. 566.

    Google Scholar 

  15. Vetter, K. and Yeager, N., in Osnovnye voprosy sovremennoi teoreticheskoi elektrokhimii (Basic Problems in Modern Theoretical Electrochemistry), Frumkin, A.N., Ed., Moscow: Mir, 1965.

    Google Scholar 

  16. Kokarev, G.A., Kolesnikov, V.A., Gubin, A.F., and Korobanov, A.A., Elektrokhimiya, 1982, vol. 18, p. 407.

    Google Scholar 

  17. Fogg, A. and Buck, R.P., Sens. Actuators, 1984, vol. 5, p. 137.

    Google Scholar 

  18. Lyamina, L.I., Tarasova, N.M., and Gorbunova, K.M., Elektrokhimiya, 1979, vol. 15, p. 1605.

    Google Scholar 

  19. Lyamina, L.I., Tarasova, N.M., and Gorbunova, K.M., Elektrokhimiya, 1985, vol. 21, p. 957.

    Google Scholar 

  20. Reiman, L.V., Tekhnika mikrodozirovaniya gazov: Spravochnik (Techniques of Gas Microdosing: A Handbook), Leningrad: Khimiya, 1985.

    Google Scholar 

  21. USSR Inventor's Certificate no. 1762214, Byull. Izobret., 1992, no. 34.

  22. Fioshin, M.Ya. and Smirnova, M.G., Elektrokhimicheskie sistemy v sinteze khimicheskikh produktov (Electrochemical Systems in Chemical Syntheses), Moscow: Khimiya, 1985.

    Google Scholar 

  23. Gamburg, Yu.D., Elektrokhimicheskaya kristallizatsiya metallov i splavov (Electrochemical Crystallization of Metals and Alloys), Moscow: Yanus-K, 1997, p. 93.

    Google Scholar 

  24. Bodoardo, S., Brenet, J., Maja, M., and Spinelli, P., Electochim. Acta, 1994, vol. 39, p. 1999.

    Google Scholar 

  25. Petrii, O.A., Electrochim. Acta, 1996, vol. 41, p. 2307.

    Google Scholar 

  26. Ruetschi, P., J. Electrochem. Soc., 1998, vol. 135, p. 2657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chviruk, V.P., Zaverach, E.M. & Linyucheva, O.V. Behavior of Porous Titanium and Catalytically Active Electrodes Based on It in Acidic Chloride Solutions. Russian Journal of Electrochemistry 37, 512–517 (2001). https://doi.org/10.1023/A:1016680221868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016680221868

Keywords

Navigation