Skip to main content
Log in

Chromosomal painting detects non-random chromosome arrangement in dasyurid marsupial sperm

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Chromosome arrangements have been studied in metaphase and interphase somatic cells and in sperm of many animal species, but there are conflicting data and it is still not clear whether chromosomes are arranged randomly or non-randomly. We used chromosome painting to reveal the positions of chromosomes in marsupial sperm. Marsupials are ideally suited for these studies because they have only a few large chromosomes. Here, we show that chromosomes occupy fixed positions in the immature and mature sperm of Sminthopsis crassicaudata. We suggest that the non-random arrangement of chromosomes in marsupial sperm may be important in establishing chromosome arrangement and patterns of gene activity within the developing embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedford M (1991) The coevolution of mammalian gametes In: Dunbar B, O'Rand M, eds. A Comparative Overview of Mammalian Fertilization. New York: Plenum Press, pp 3–28.

    Google Scholar 

  • Bennett M (1982) Nuclear organization and DNA content. In: Dover GA, Flavell RB, eds. Genome Evolution. London: Academic Press, pp. 239–275.

    Google Scholar 

  • Borden J, Manuelidis L (1988) Movement of the X chromo-some in epilepsy. Science 242: 1687–1691.

    Google Scholar 

  • Breed WG (1994) How does sperm meet egg? in a marsupial. Marsupial reproduction: Gametes, fertilization and early development. Reprod Fertil Dev 6: 485–506.

    Google Scholar 

  • Clemens WA, Richardson BJ, Baverstock PR (1989) Biogeography and phylogeny of the metatheria. In: Fauna of Australia. Canberra: Australian Government Publishing Service, pp. 527–548.

    Google Scholar 

  • Comings DE (1968) The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Hum Genet 20: 440–456.

    Google Scholar 

  • Douglas LT (1965) Evidence for tandem arrangement of chromosomal elements in spermatid nuclei of the Chinese hamster. Genetica 36: 59–64.

    Google Scholar 

  • Dressler B, Schmid M (1976) Specific arrangement of chromo-somes in the spermiogenesis of Gallus domesticus. Chromo-soma 58: 387–391.

    Google Scholar 

  • Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: Phylogenetic and diagnostic appli-cations. Eur J Hum Genet 5: 253–265.

    Google Scholar 

  • Haaf T, Schmid M (1991) Chromosome topology in mam-malian interphase nuclei. Exp Cell Res 192: 325–332.

    Google Scholar 

  • Harding HR, Woolley PA, Shorey CD, Carrick FN (1982) Sperm ultrastructure, Spermiogenesis and epididymal sperm maturation in dasyurid marsupials: phylogenetic implications. In: Archer A, ed. Carnivorous Marsupials. Sydney: Royal Zoological Society of New South Wales, pp 659–673.

    Google Scholar 

  • Hazzouri M, Rousseaux S, Mongelard F et al. (2000) Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev 55: 307–315.

    Google Scholar 

  • Heslop-Harrison JS, Bennett MD (1990) Nuclear architecture in plants. Trends Genet 6: 401–405.

    Google Scholar 

  • Hewitson LC, Simerly CR, Tengowski MW et al. (1996) Microtubule and chromatin configurations during rhesus intracytoplasmic sperm injection: success and failures. Biol Reprod 55: 271–280.

    Google Scholar 

  • Hughes-Schrader S (1946) A new type of spermatogenesis in iceryine coccids with linear alignment of chromosomes in the sperm. J Morphol 78: 43–84.

    Google Scholar 

  • Inoue S, Sato H(1962) Arrangement of DNA in living sperm: A biophysical analysis. Science 136: 1122–1124.

    Google Scholar 

  • In't Veid P, Brandenberg H, Verhoeff A, Dhont M, Los F (1995) Sex chromosomal abnormalities and intracytoplasmic sperm injection. Lancet 346: 773.

    Google Scholar 

  • Joffe BI, Solovei IV, Macgregor HC (1998) Ordered arrange-ment and rearrangement of chromosomes during spermato-genesis in two species of planarians (Plathelminthes). Chromosoma 107: 173–183.

    Google Scholar 

  • Koss LG (1998) Characteristics of chromosomes in polarized normal human bronchial cells provide a blueprint for nuclear organization. Cytogenet Cell Genet 82: 230–237.

    Google Scholar 

  • Kozubek S, Lukasova E, Amrichova J, Kozubek M, Liskova A, Slotova J (2000) In£uence of cell fixation on chromatin topography. Anal Biochem 282: 29–38.

    Google Scholar 

  • Leitch AR, Brown JKM, Mosgoller W, Schwarzacher T, Heslop-Harrison JS (1994) The spatial localization of hom-ologous chromosomes in human fibroblasts at mitosis. Hum Genet 93: 275–280.

    Google Scholar 

  • Lichter P, Cremer T, Manuelidis L, Ward DC (1988) Delin-eation of individual human chromosomes in metaphase and interphase cells by in-situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234.

    Google Scholar 

  • Luetjens CM, Payne C, Schatten G (1999) Non-random chromosome positioning in human sperm and sex chromo-some anomalies following intracytoplasmic sperm injection. Lancet 353: 1240.

    Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372–373.

    Google Scholar 

  • Macgregor HC, Walker MH (1973) The arrangement of chromosomes in nuclei of sperm from Plethodontid salamanders. Chromosoma 40: 243–262.

    Google Scholar 

  • Manuelidis L (1984) Different central nervous system cell types display distinct and non-random arrangements of satellite DNA sequences. Proc Natl Acad Sci USA 81: 3123–3127.

    Google Scholar 

  • Manuelidis L, Borden J (1988) Reproducible compart-mentalization of individual chromosome domains in human CNS cells revealed by in-situ hybridization and three dimensional reconstruction. Chromosoma 96: 397–410.

    Google Scholar 

  • Meyer-Ficca M, Muller-Navia J, Scherthan H (1998) Clustering of pericentromeres initiates in step 9 of sperm-iogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci 111: 363–1370.

    Google Scholar 

  • Mosgoller W, Leitch AR, Brown JKM, Heslop-Harrison JS (1991) Chromosome arrangements in human fibroblasts at mitosis. Hum Genet 88: 27–33.

    Google Scholar 

  • Nagele RG, Freeman T, McMorrow L, Lee H (1995) Precise spatial positioning of chromosomes during prometaphase: Evidence for chromosomal order. Science 270: 1831–1834.

    Google Scholar 

  • Nagele RG, Freeman T, Fazekas J, Lee KM, Thomson Z, Lee H (1998) Chromosome spatial order in human cells: evidence for early origin and faithful propagation. Chromosoma 107: 331–338.

    Google Scholar 

  • Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee H (1999) Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J Cell Sci 112: 525–535.

    Google Scholar 

  • Ohno S (1967) Evolution of dosage compensation mechanism for sex-linked genes In: Labhart A, Mann T, Samuels Lt, Zander J, eds. Sex Chromosomes and Sex-Linked Genes. Berlin: Springer-Verlag, pp 82–100.

    Google Scholar 

  • Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone to protamine replacement reaction. Prog Nucl Acid Res Mol Biol 40: 25–93.

    Google Scholar 

  • Qumsiyeh MB (1995) Impact of rearrangements on function and position of chromosomes in the interphase nucleus and on human genetic disorders. Chromosome Res 3: 455–465.

    Google Scholar 

  • Rens W, O'Brien PCM, Yang F, Graves JAM, Ferguson-Smith MA (1999) Karyotype relationships between four distantly related marsupials revealed by reciprocal chromosome painting. Chromosome Res 7: 461–474.

    Google Scholar 

  • Retlief JD, Rees JS, Westerman M, Dixon GH (1995) Conver-gent evolution of cysteine residues in sperm protamines of one genus of marsupials, the Planigales. Mol Biol Evol 12: 708–712.

    Google Scholar 

  • Rodger JC (1991) Fertilization of marsupials, In: Dunbar BS, O'Rand MG, eds. A Comparative Overview of Mammalian Fertilization. New York: Plenum Press, pp 117–132.

    Google Scholar 

  • Schmid M (1979) On the arrangement of chromosomes in the elongated sperm nuclei of Anura (Amphibia). Chromosoma 75: 215–234.

    Google Scholar 

  • Skaer RJ, Whytock S (1976) The fixation of nuclei and chromosomes. J Cell Sci 20: 221–231.

    Google Scholar 

  • Solovei IV, Joffe BI, Hori T, Thomson P, Mizuno S, Macgregor HC (1998) Unordered arrangement of chromosomes in the nuclei of chicken spermatozoa. Chromosoma 107: 184–188.

    Google Scholar 

  • Taylor JH (1964) The arrangement of chromosomes in the mature sperm of grasshopper. J Cell Biol 21: 286–289.

    Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified £ow-sorted chromosomes. Genes Chromosomes Cancer 4: 257–263.

    Google Scholar 

  • Toder R, Wakefield MJ, Graves JAM (2001) The minimal mammalian Y chromosome the marsupial Y as a model system. Cytogenet Cell Genet (in press).

  • Watson JM, Meyne J, Graves JAM (1996) Ordered tandem arrangement of chromosomes in the sperm heads of monotreme mammals. Proc Natl Acad Sci USA. 93: 10200–10205.

    Google Scholar 

  • Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM (1995) Well-defined genome architecture in the human sperm nucleus. Chromosoma 103: 577–590.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greaves, I.K., Svartman, M., Wakefield, M. et al. Chromosomal painting detects non-random chromosome arrangement in dasyurid marsupial sperm. Chromosome Res 9, 251–259 (2001). https://doi.org/10.1023/A:1016656722134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016656722134

Navigation