Skip to main content
Log in

Neutron Diffraction Analysis of H3Co2[C5H2(t-Bu)3]2, a Molecule with a Triply Hydrogen-Bridged Metal–Metal Bond: Some Comments on Structural Patterns in M(μ-H)nM Systems (n=1, 2, 3, 4)

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The structure of H3Co2[C5H2(t-Bu)3]2 has been analyzed by low-temperature single-crystal neutron diffraction techniques, and shown to consist of two CoCp moieties with three hydride ligands bridging the central Co–Co bond. Despite a fairly extensive twinning problem, the structure could be solved and successfully refined to a final R factor of 9.2% for 2024 reflections. Average molecular parameters in the H3Co2 core of the molecule are as follows: Co–Co=2.275(21) Å, Co–H=1.637(16) Å, H⋯H=2.050(20) Å, Co–H–Co=88.0(9)°, H–Co–H=77.0(7)°. Also included in this paper is a discussion on the molecular dimensions of symmetric hydride-bridged dinuclear systems (M(μ-H)nM, n=1, 2, 3, 4) that have been studied to date by neutron diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. C. Stevens, M. R. McLean, T. Wen, J. D. Carpenter, R. Bau, and T. F. Koetzle (1989). Inorg. Chim. Acta 161, 223.

    Google Scholar 

  2. F. Lutz, R. Bau, P. Wu, T. F. Koetzle, C. Kruger, and J. J. Schneider (1996). Inorg. Chem. 35, 2698.

    Google Scholar 

  3. J. J.Schneider, U. Specht, R. Goddard, and C. Krüger (1997). Chem.Ber. 130, 161.

    Google Scholar 

  4. M. Thomas, R. F. D. Stansfield, M. Berneron, A. Filhol, G. Greenwood, J. Jacobe, D. Feltin, and S. A. Mason, in P. Convert and J. B. Forsyth (eds.), Position-Sensitive Detection of Thermal Neutrons (Academic Press, London, 1983), p. 344.

    Google Scholar 

  5. C. Wilkinson, H. W. Khamis, R. F. D. Stansfield, and G. J. McIntyre (1988). J. Appl. Cryst. 21, 471.

    Google Scholar 

  6. A complete listing of the atomic coordinates, distances, and angles and a summary of the structure analysis can be obtained, on request, by writing to the Cambridge Crystallo-graphic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK (reference number CCDC-148143).

  7. F. Hahn and W. Massa, TWINXL, Programm zur Aufbereitung von Beugungsdaten verzwillingter Kristalle, Version 3.0, (Universität Marburg, Marburg, 1996).

    Google Scholar 

  8. G. M. Sheldrick, SHELX-97, a Computer Program for the Refinement of Crystal Structures (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  9. L. J. Farrugia, WinGX, a Windows Program for Crystal Structure Analysis (University of Glasgow, Glasgow, 1998).

    Google Scholar 

  10. To appreciate why M–M distances in M(µ-H) 3M systems are invariably shorter than M–M distances in M(µ-H) 2M bridges, imagine two octahedra sharing an edge (a situation analogous to M(µ-H)2M) and compare this arrangement with two octahedra sharing a face (analogous to M(µ-H) 3M): If the M–H distances are maintained to be equal in the two cases, the centers of the two octahedra will automatically be closer in the latter case.

  11. A. Dedieu, T. A. Albright, and R. Hoffmann (1979). J. Am. Chem. Soc. 101, 3141.

    Google Scholar 

  12. R. Bau, W. E. Carroll, R. G. Teller, and T. F. Koetzle (1977). J. Am. Chem. Soc. 99, 3872.

    Google Scholar 

  13. J. A. K. Howard, O. Johnson, T. F. Koetzle, and J. L. Spencer (1987). Inorg. Chem. 26, 2930.

    Google Scholar 

  14. L. Brammer, J. A. K. Howard, O. Johnson, T. F. Koetzle, J. L. Spencer, and A. M. Stringer (1991). J. Chem. Soc. Chem. Commun. 241.

  15. S. C. Abrahams, A. P. Ginsberg, T. F. Koetzle, P. Marsh, and C. R. Sprinkle (1986). Inorg. Chem. 25, 2500.

    Google Scholar 

  16. A. Berry, M. L. H. Green, J. A. Bandy, and K. Prout (1991). J. Chem. Soc. Dalton Trans. 2185.

  17. M. H. Drabnis, R. Bau, S. A. Mason, J. W. Freeman, and R. D. Ernst (1998). Eur. J. Inorg. Chem. 851.

  18. J. L. Petersen, R. K. Brown, J. M. Williams, and R. K. McMullan (1979). Inorg. Chem. 18, 3493.

    Google Scholar 

  19. D. W. Hart, R. Bau, and T. F. Koetzle (1985). Organometallics 4, 1590.

    Google Scholar 

  20. C. Y. Wei, M. W. Marks, R. Bau, S. W. Kirtley, D. E. Bisson, M. E. Henderson, and T. F. Koetzle (1982). Inorg. Chem. 21, 2556.

    Google Scholar 

  21. D. Hanke, K. Wieghardt, B. Nuber, R. S. Lu, R. K. McMullan, T. F. Koetzle, and R. Bau (1993). Inorg. Chem. 32, 4300.

    Google Scholar 

  22. R. G. Teller, J. M. Williams, T. F. Koetzle, R. R. Burch, R. M. Gavin, and E. L. Muetterties (1981). Inorg. Chem. 20, 1806.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortz, M., Bau, R., Schneider, J.J. et al. Neutron Diffraction Analysis of H3Co2[C5H2(t-Bu)3]2, a Molecule with a Triply Hydrogen-Bridged Metal–Metal Bond: Some Comments on Structural Patterns in M(μ-H)nM Systems (n=1, 2, 3, 4). Journal of Cluster Science 12, 285–291 (2001). https://doi.org/10.1023/A:1016643617254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016643617254

Navigation