Skip to main content
Log in

On the stability of the J transformation

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The stability of a large class of nonlinear sequence transformations is analyzed. Considered are variants of the J transformation [17]. Suitable variants of this transformation belong to the most successful extrapolation algorithms that are known [20]. Similar to recent results of Sidi, it is proved that the p {J} transformations, the Weniger S transformation, the Levin transformation and a special case of the generalized Richardson extrapolation process of Sidi are S-stable. An efficient algorithm for the calculation of stability indices is presented. A numerical example demonstrates the validity of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Baker, Jr., Essentials of Padé Approximants (Academic Press, New York, 1975).

    Google Scholar 

  2. G.A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd ed. (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  3. C. Brezinski, Accélération de la Convergence en Analyse Numérique (Springer, Berlin, 1977).

    Google Scholar 

  4. C. Brezinski, Algorithmes d'Accélération de la Convergence – Étude Numérique (É ditions Technip, Paris, 1978).

    Google Scholar 

  5. C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175–180.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Brezinski, Padé-type Approximation and General Orthogonal Polynomials (Birkhäuser, Basel, 1980).

    Google Scholar 

  7. C. Brezinski, A Bibliography on Continued Fractions, Padé Approximation, Extrapolation and Related Subjects (Prensas Universitarias de Zaragoza, Zaragoza, 1991).

    Google Scholar 

  8. C. Brezinski, ed., Continued Fractions and Padé Approximants (North-Holland, Amsterdam, 1991).

  9. C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1991).

    Google Scholar 

  10. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. I (McGraw-Hill, New York, 1953).

    Google Scholar 

  11. P.R. Graves-Morris, ed., Padé Approximants (The Institute of Physics, London, 1972).

  12. P.R. Graves-Morris, ed., Padé Approximants and Their Applications (Academic Press, London, 1973).

  13. P.R. Graves-Morris, E.B. Saff and R.S. Varga, eds., Rational Approximation and Interpolation (Springer, Berlin, 1984).

    Google Scholar 

  14. E.R. Hansen, A Table of Series and Products (Prentice-Hall, Englewood Cliffs, NJ, 1975).

    Google Scholar 

  15. T. Håvie, Generalized Neville type extrapolation schemes, BIT 19 (1979) 204–213.

    Article  MATH  MathSciNet  Google Scholar 

  16. H.H.H. Homeier, Some applications of nonlinear convergence accelerators, Internat. J. Quantum Chem. 45 (1993) 545–562.

    Article  Google Scholar 

  17. H.H.H. Homeier, A hierarchically consistent, iterative sequence transformation, Numer. Algorithms 8 (1994) 47–81.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.H.H. Homeier, Nonlinear convergence acceleration for orthogonal series, in: Proc. of the 6th Joint EPS–APS Internat. Conf. on Physics Computing, Physics Computing' 94, eds. R Gruber and M. Tomassini (European Physical Society, Genf, Schweiz, 1994) pp. 47–50 (ISBN 2-88270-011-3), http://www.chemie.uni-regensburg.de/preprint.html#TC-NA-94-2.

    Google Scholar 

  19. H.H.H. Homeier, Determinantal representations for the \(J\) transformation, Numer. Math. 71 (1995) 275–288.

    Article  MATH  MathSciNet  Google Scholar 

  20. H.H.H. Homeier, Analytical and numerical studies of the convergence behavior of the \(J\) transformation, J. Comput. Appl. Math. 69 (1996) 81–112.

    Article  MATH  MathSciNet  Google Scholar 

  21. H.H.H. Homeier, Extrapolationsverfahren für Zahlen-, Vektor-und Matrizenfolgen und ihre Anwendung in der Theoretischen und Physikalischen Chemie, Habilitation thesis, Universität Regensburg (1996), http://www.chemie.uni-regensburg.de/preprint.html#homeier habil.

  22. H.H.H. Homeier, On convergence acceleration of multipolar and orthogonal expansions, in: Proc. of the 4th Electronic Computational Chemistry Conf., submitted (1997), http://www.chemie.uni-regensburg.de/ECCC/4/paper.homeier.

  23. H.H.H. Homeier, The vector \(J\) extrapolation method, in: Proc. of the 3rd IMACS Internat. Symp. on Iterative Methods in Scientific Computing, Jackson Hole, WY (July 9–12, 1997).

  24. H.H.H. Homeier, An asymptotically hierarchy-consistent iterated sequence transformation for convergence acceleration of Fourier series, Numer. Algorithms, submitted (1998).

  25. H.H.H. Homeier, On an extension of the complex series method for the convergence acceleration of orthogonal expansions, Numer. Math., submitted (1998).

  26. H.H.H. Homeier, S. Rast and H. Krienke, Iterative solution of the Ornstein–Zernike equation with various closures using vector extrapolation, Comput. Phys. Comm. 92 (1995) 188–202.

    Article  MATH  Google Scholar 

  27. A.N. Khovanskii, The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory (Noordhoff, Groningen, 1963).

    Google Scholar 

  28. D. Levin, Development of nonlinear transformations for improving convergence of sequences, Internat. J. Comput. Math. B 3 (1973) 371–388.

    MATH  Google Scholar 

  29. D. Levin and A. Sidi, Two new classes of nonlinear transformations for accelerating the convergence of infinite integrals and series, Appl. Math. Comput. 9 (1981) 175–215.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Lorentzen and H. Waadeland, Continued Fractions with Applications (North-Holland, Amsterdam, 1992).

    Google Scholar 

  31. E.M. Nikishin and V.N. Sorokin, Rational Approximations and Orthogonality (Amer. Mathematical Soc., Providence, RI, 1991).

    Google Scholar 

  32. K.J. Overholt, Extended Aitken acceleration, BIT 5 (1965) 122–132.

    Article  MATH  MathSciNet  Google Scholar 

  33. P.P. Petrushev and V.A. Popov, Rational Approximation of Real Functions (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  34. B. Ross, Methods of Summation (Descartes Press, Koriyama, 1987).

    Google Scholar 

  35. E.B. Saff and R.S. Varga, eds., Padé and Rational Approximation (Academic Press, New York, 1977).

    Google Scholar 

  36. A. Sidi, An algorithm for a special case of a generalization of the Richardson extrapolation process, Numer. Math. 38 (1982) 299–307.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Sidi, Acceleration of convergence of (generalized) Fourier series by the d-transformation, Ann. Numer. Math. 2 (1995) 381–406.

    MATH  MathSciNet  Google Scholar 

  38. A. Sidi, Convergence analysis for a generalized Richardson extrapolation process with an application to the d (1) transformation on convergent and divergent logarithmic sequences, Math. Comp. 64 (1995) 1627–1657.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Sidi, Further results on convergence and stability of a generalization of the Richardson extrapolation process, BIT 36 (1996) 143–157.

    Article  MATH  MathSciNet  Google Scholar 

  40. H.S. Wall, Analytic Theory of Continued Fractions (Chelsea, New York, 1973).

    Google Scholar 

  41. E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep. 10 (1989) 189–371.

    Article  Google Scholar 

  42. E.J. Weniger, On the derivation of iterated sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Comm. 64 (1991) 19–45.

    Article  MathSciNet  Google Scholar 

  43. E.J. Weniger, Verallgemeinerte Summationsprozesse als numerische Hilfsmittel für quantenmechanische und quantenchemische Rechnungen, Habilitationsschrift, Universität Regensburg (1994).

  44. E.J. Weniger, Nonlinear sequence transformations: A computational tool for quantum mechanical and quantum chemical calculations, Internat. J. Quantum Chem. 57 (1996) 265–280.

    Article  Google Scholar 

  45. E.J. Weniger, Erratum: Nonlinear sequence transformations: A computational tool for quantum mechanical and quantum chemical calculations, Internat. J. Quantum Chem. 58 (1996) 319–321.

    Article  Google Scholar 

  46. H. Werner and H.J. Bünger, eds., Padé Approximations and Its Applications (Springer, Berlin, 1984).

    Google Scholar 

  47. J. Wimp, Sequence Transformations and Their Applications (Academic Press, New York, 1981).

    Google Scholar 

  48. L. Wuytack, ed., Padé Approximations and Its Application(Springer, Berlin, 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homeier, H.H. On the stability of the J transformation. Numerical Algorithms 17, 223–239 (1998). https://doi.org/10.1023/A:1016636524488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016636524488

Navigation