Skip to main content
Log in

Hydrido-Carbonyl Rhenium Clusters with a Square Geometry of the Metal Core. Synthesis and X-Ray Characterization of the Novel [Re4(μ-H)3(CO)16]− Anion

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Three and tetranuclear ring clusters have been obtained by treatment of [Re2(CO)8(THF)2] with carbonyl-rhenates containing two terminal hydrides. The reaction with [ReH2(CO)4]- provided a selective route to the previously known [Re3(μ-H)2(CO)12]- triangular cluster anion 1. The reaction with [Re2H2(μ-H)(CO)8]- gave the novel [Re4(μ-H)3(CO)16]- anion 2, containing a rare example of a puckered-square metal cluster. Protonation of 1 is known to afford the neutral [Re3(μ-H)3(CO)12] species 3. Analogously the reaction of 2 with a strong acid afforded the previously known square metal clusters [Re4(μ-H)4(CO)16] 4. The reaction could not be reversed by treatment with bases. Photolysis of 4 gave the unsaturated complex [Re2(μ-H)2(CO)8] 5: this is the reverse of the dimerization reaction, that in THF at room temperature produces 4 from 5. Thermal treatment (reflux in cyclohexane for 24 h) left 4 almost unchanged. A single crystal X-ray analysis of [NEt4]2 showed a s/e/s/s (e=eclipsed, s=staggered) conformation of the Re(CO)4 units, leading to a puckered geometry of the ring, at variance with the square-planar geometry of 4 (all eclipsed). Two of the three hydrides of 2 have been located as bridging the Re–Re edges from inside the metal ring, as previously observed in 4. Density functional computations indicated a puckered conformation as the most stable for both 2 and 4, with very low activation energies for ring inversion (6.6 and 2.2 kcal·mol-1, respectively), but ruled out solid state fluxionality for 4, whose observed planar geometry must be attributed to packing stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Bergamo, T. Beringhelli, G. D'Alfonso, P. Mercandelli, M. Moret, and A. Sironi (1998). Angew. Chem. Int. Ed. 37, 2128.

    Google Scholar 

  2. M. Bergamo, T. Beringhelli, G. D'Alfonso, P. Mercandelli, M. Moret, and A. Sironi (1999). Angew. Chem. Int. Ed. 38, 3486.

    Google Scholar 

  3. L. Carlucci, G. D'Alfonso, and D. M. Proserpio (1999). Organometallics 18, 2091.

    Google Scholar 

  4. L. M. Venanzi (1982). Coord. Chem. Rev. 43, 251.

    Google Scholar 

  5. (a) R. H. Crabtree (1993). Angew. Chem. Int. Ed. Engl. 32, 789; (b) R. H. Crabtree and D. G. Hamilton (1988). Adv. Organomet. Chem. 28, 299.

    Google Scholar 

  6. See also (a) T. Beringhelli, G. D'Alfonso, and M. Zarini (1995). J. Chem. Soc. Dalton Trans. 2407; (b) M. Bergamo, T. Beringhelli, G. Ciani, G. D'Alfonso M. Moret, and A. Sironi (1997). Inorg. Chim. Acta. 295, 291, and refs. therein; (c) M. Bergamo, T. Beringhelli, G. D'Alfonso, G. Ciani, M. Moret, and A. Sironi (1996). Organometallics 15, 3876; (d) M. Bergamo, T. Beringhelli, G. D'Alfonso, P. Mercandelli, M. Moret, and A. Sironi (1997). Organometallics 16, 4129; (e) M. Bergamo, T. Beringhelli, G. D'Alfonso, P. Mercandelli, M. Moret, and A. Sironi (1998). J. Am. Chem. Soc. 120, 2971; (f ) G. D'Alfonso (2000). Chem. Eur. J. 6, 209.

  7. G. D'Alfonso, L. Garavaglia, A. Sironi, and N. Masciocchi (2000). Angew. Chem. Int. Ed. Engl. 39, 4477.

    Google Scholar 

  8. R. Hoffmann (1982). Angew. Chem. Int. Ed. Engl. 21, 711.

    Google Scholar 

  9. M. R. Churchill, P. H. Bird, H. D. Kaesz, R. Bau, and B. Fontal (1968). J. Am. Chem. Soc. 90, 7135.

    Google Scholar 

  10. D. K. Huggins, W. Fellmann, J. M. Smith, and H. D. Kaesz (1964). J. Am. Chem. Soc. 86, 4841.

    Google Scholar 

  11. N. Masciocchi, A. Sironi, and G. D'Alfonso (1990). J. Am. Chem. Soc. 112, 9395

    Google Scholar 

  12. H. D. Kaesz (1980). J. Organomet. Chem. 200, 145.

    Google Scholar 

  13. T. Beringhelli, G. Ciani, G. D'Alfonso, H. Molinari, and A. Sironi, (1985). Inorg. Chem. 24, 2666.

    Google Scholar 

  14. T. Beringhelli, G. D'Alfonso, L. Ghidorsi, G. Ciani, A. Sironi, and H. Molinari (1987). Organometallics, 6, 1365.

    Google Scholar 

  15. M. Herberhold, G. Süss, J. Ellermann, and H. Gaäbelein (1978). Chem. Ber. 111, 2931.

    Google Scholar 

  16. R. A. Epstein, T. R. Gaffney, G. L. Geoffroy, W. L. Gladfelter, and R. S. Henderson, (1979). J. Am. Chem. Soc. 101, 3847.

    Google Scholar 

  17. F. W. B. Einstein, V. J. Johnston, and R. K. Pomeroy (1990). Organometallics 9, 2754.

    Google Scholar 

  18. (a) G. Ciani, V. G. Albano, and A. Immirzi (1976). J. Organomet. Chem. 121, 237; (b) M. Freni, P. Romiti, and G. D'Alfonso (1977). J. Organomet. Chem. 140, 195.

    Google Scholar 

  19. T. Beringhelli, G. Ciani, G. D'Alfonso, A. Sironi, and M. Freni (1985). J. Chem. Soc. Chem. Commun. 978.

  20. A. G. J. Orpen (1980). J. Chem. Soc. Dalton Trans. 2509.

  21. J. S. Wright and L. Salem (1969). J. Chem. Soc. Chem. Commun. 1370.

  22. D. Heisterberg, QUATFIT (Ohio Supercomputer Center, Columbus, 1990).

    Google Scholar 

  23. M. A. Andrews, S. W. Kirtley, and H. D. Kaesz (1977). Inorg. Chem. 16, 1556.

    Google Scholar 

  24. G. F. P. Warnock, L. Cammarano Moodie, and J. E. Ellis (1989). J. Am. Chem. Soc. 111, 2131.

    Google Scholar 

  25. Bruker AXS SAINT (Bruker, Madison, WI, 1993–1999).

  26. G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction (University of Göttingen, Göttingen, 1996).

    Google Scholar 

  27. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, C. Polidori, and M. Camalli (1994). J. Appl. Crystallogr. 27, 435.

    Google Scholar 

  28. G. M. Sheldrick, SHELX97: Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  29. H. D. Flack (1983). Acta Crystallogr. A39, 876.

    Google Scholar 

  30. J. C. Slater, The Self-Consistent Field for Molecules and Solids (McGraw–Hill, New York, 1974).

    Google Scholar 

  31. S. H. Vosko, L. Wilk, and M. Nusair (1980). Can. J. Phys. 58, 1200.

    Google Scholar 

  32. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien (1992). Can. J. Chem. 70, 612.

    Google Scholar 

  33. A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, and G. Frenking (1993). Chem. Phys. Lett. 208, 111.

    Google Scholar 

  34. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch (1996). J. Comp. Chem. 17, 49.

    Google Scholar 

  35. P. Csaszar and P. Pulay (1984). J. Mol. Struct. (THEOCHEM) 114, 31.

    Google Scholar 

  36. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN98, Revision A.7 (Gaussian, Inc., Pittsburgh, PA, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergamo, M., Beringhelli, T., D'Alfonso, G. et al. Hydrido-Carbonyl Rhenium Clusters with a Square Geometry of the Metal Core. Synthesis and X-Ray Characterization of the Novel [Re4(μ-H)3(CO)16]− Anion. Journal of Cluster Science 12, 223–242 (2001). https://doi.org/10.1023/A:1016635415437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016635415437

Navigation