Skip to main content
Log in

Spectral Properties of Single BODIPY Dyes in Polystyrene Microspheres and in Solutions

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The absorption, fluorescence, fluorescence quantum yield, and photostability of five BODIPY dyes are characterized and compared as single dyes in two environments, in 40-nm polystyrene spheres and in solution. The absorption and fluorescence spectra of the dyes in spheres are similar in profile but shifted to lower energies compared to those in solution. All the dyes are highly fluorescent, with three having fluorescence quantum yields of 1.0. For three of the five dyes, the yields were the same in spheres as in solution (1.00, 1.00, and 0.73). The high concentration of these dyes in spheres does not quench their fluorescence. For two other dyes the yields dropped, from 1.00 to 0.55 in one case and 0.83 to 0.50 in another, comparing the dyes in solution versus in spheres. The photodegradation of the dyes decreases in spheres compared to in solution in all but one case. For one dye, it decreases as much as 800-fold. Dyes overlooked because of low fluorescence or stability in solution could become useful fluorescent materials in the microsphere environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. H. Drexhage (1977) in F. P. Schafer (Ed.), Dye Lasers, Springer, Berlin, pp. 144-193.

    Google Scholar 

  2. R. Sastre and A. Costela (1995) Adv. Mater. 7, 198-211.

    Google Scholar 

  3. W. J. Wadsworth, J. William, S. M. Giffin, and G. J. Smith (1999) Appl. Opt. 38, 2504-2512.

    Google Scholar 

  4. N. N. Barashkov and O. A. Gunder (1996) Fluorescent Polymers, Ellis Horwood, New York.

    Google Scholar 

  5. R. Sastre and A. Costela (1995) Adv. Mater. 7, 198-202.

    Google Scholar 

  6. S. Popov (1998) Appl. Opt. 37, 6449-6455.

    Google Scholar 

  7. R. K. Chang and A. J. Campillo (Eds.) (1996) Optical Processes in Microcavities, World Scientific, Singapore.

    Google Scholar 

  8. H. Taniguchi and S. Tanosaki (1994) Opt. Quantum Electron. 26, 1003-1012.

    Google Scholar 

  9. J. C. Knight, N. Dubreuil, and S. Haroche (1996) Opt. Lett. 21, 698-702.

    Google Scholar 

  10. Y. Wu and P. T. Leung (1999) Phys. Rev. A 60, 630-633.

    Google Scholar 

  11. W. T. Mason (Ed.) (1999) Fluorescent and Luminescent Probes for Biological Activity, Academic Press, New York.

    Google Scholar 

  12. J. M. Brinkley, R. P. Haugland, and V. L. Singer (1994) U.S. Patent No. 5,326,692.

  13. R. P. Haugland (1990) in B. Herman and K. Jacobson (Eds.), Optical Microscopy for Biology, Wiley-Liss, New York pp. 143-157.

    Google Scholar 

  14. R. P. Haugland (1996) Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes Product Information #MP05000, #MP05001, and #MP07186, Molecular Probes, Eugene, OR (www.probes.com).

    Google Scholar 

  15. Y.-Z Zhang, C. Kemper, A. Bakke, and R. P. Haugland (1998) Cytometry 33, 244-248.

    Google Scholar 

  16. M. F. M. van Oosterhout, F. W. Prinzen, and J. R. S. Hales (1998) Am. J. Physiol. 275, 2-11.

    Google Scholar 

  17. J. J. Kelly, J. R. Ewen, R. Jon, and C. H. Barlow (2000) Rev. Sci. Instr. 71, 228-234.

    Google Scholar 

  18. I. D. Johnson (1998) Histochem. J. 30, 123-131.

    Google Scholar 

  19. D. V. Roberts, B. P. Wittmershaus, Y.-Z. Zhang, S. Swan, and M. P. Klinosky (1998) J. Luminesc. 79, 225-233.

    Google Scholar 

  20. B. M. Bar, A. Schattenberg, B. A. Van Dijk, A. J. De Man, V. A. Kunst, and T. De Witte (1989) Br. J. Haematol. 72, 239-245.

    Google Scholar 

  21. D. Bagnol, Y. Jule, G. Kirchner, A. Cupo, and C. Roman (1993) J. Auton. Nerv. Syst. 42, 143-151.

    Google Scholar 

  22. H. H. Guo, Z. H. Lu, and S. C. Peiper (1997) Methods Enzymol. 288, 148-158.

    Google Scholar 

  23. M. A. Flynn, Y. Vodovotz, R. Kornowski, S. Epstein, D. Gordon, and J. A. Keiser (2000) Biotechniques 28, 470-472.

    Google Scholar 

  24. R. P. Haugland and H. C. Kang (1988) U.S. Patent No. 4,774,339.

  25. R. P. Haugland and H. C. Kang (1993) U.S. Patent No. 5,248,782.

  26. J. Karolin, L. B.-A. Johansson, L. Strandberg, and T. Ny (1994) J. Am. Chem. Soc. 116, 7801-7806.

    Google Scholar 

  27. J. N. Demas and G. A. Crosby (1971) J. Phys. Chem. 75, 991-1024.

    Google Scholar 

  28. J. Lakowicz (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  29. D. Magde, J. H. Brannon, T. L. Cremers, and J. Olmsted III (1979) J. Phys. Chem. 83, 696-699.

    Google Scholar 

  30. R. F. Kubin and A. N. Fletcher (1982) J. Luminesc. 27, 455-462.

    Google Scholar 

  31. L. Song, E. J. Hennink, T. Young, and H. J. Tanke (1995) Biophys. J. 68, 2588-2600.

    Google Scholar 

  32. S. S. Yanari, F. A. Bovey, and R. Lumry (1963) Nature 200, 242-244.

    Google Scholar 

  33. R. Sens and K. H. Drexhage (1981) J. Luminesc. 24/25, 709-712.

    Google Scholar 

  34. Cresyl Violet Perchlorate Product Information Sheet (1999) Exciton, Inc.

  35. I. D. Johnson, H. C. Kang, and R. P. Haugland (1991) Anal. Biochem. 198, 228-237.

    Google Scholar 

  36. A. Imhoff, M. Megens, J. J. Engelberts, D. T. N. de Lang, R. Sprik, and W. L. Vos (1999) J. Phys. Chem. 103, 1408-1415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce P. Wittmershaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmershaus, B.P., Skibicki, J.J., McLafferty, J.B. et al. Spectral Properties of Single BODIPY Dyes in Polystyrene Microspheres and in Solutions. Journal of Fluorescence 11, 119–128 (2001). https://doi.org/10.1023/A:1016629518660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016629518660

Navigation