Skip to main content
Log in

Gas-Generating Porous Electrodes: Effect of the Porous Space Structure on Polarization Curves

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The operation of gas-generating porous electrodes (GGPE) is studied qualitatively and quantitatively in the entire range of overvoltages. The range comprises a low-overvoltage region, a transition region, and a low-polarizability region. The first region extends to the instance when first gas pores form at the rear surface of GGPE. In the second region, the formation of a gas channel begins. This is the channel through which gas is removed from GGPE by filtration. The formation of the gas channel is completed when first gas pores emerge at the front surface of GGPE. In the third, gas is removed by a powerful process, specifically, by gas filtration in gas pores. The current in the last region increases very rapidly. The presented theory reveals basic parameters that determine the nature and principal features of polarization curves (PC). In all the regions, PC are calculated with constants close to those typical for chlorine generation in DSA. It is shown how the porous space structure (pore types, distribution of pores by size in the presence of micropores and macropores, maximum and minimum pore radii) and parameters that characterize outer-diffusion limitations (processes that occur in the electrolyte chamber) define all characteristics of GGPE and, which is more, define the shape of PC. Using results of this mathematical modeling of gas generation and removal in porous electrodes and electrolyte chamber, one can start looking for ways to purposefully alter the porous space structure of GGPE (in particular, DSA) in order to subsequently optimize characteristics of DSA and GGPE of other types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pecherskii, M.M., Gorodetskii, V.V., Evdokimov, S.V., and Losev, V.V., Elektrokhimiya, 1981, vol. 17, p. 1087.

    Google Scholar 

  2. Evdokimov, S.V., Gorodetskii, V.V., and Losev, V.V., Elektrokhimiya, 1985, vol. 21, p. 1427.

    Google Scholar 

  3. Evdokimov, S.V. and Gorodetskii, V.V., Elektrokhimiya, 1986, vol. 22, p. 782.

    Google Scholar 

  4. Evdokimov, S.V. and Gorodetskii, V.V., Elektrokhimiya, 1986, vol. 22, p. 982.

    Google Scholar 

  5. Evdokimov, S.V., Yanovskaya, M.I., Roginskaya, Yu.E., et al., Elektrokhimiya, 1987, vol. 23, p. 1509.

    Google Scholar 

  6. Evdokimov, S.V., Gorodetskii, V.V., Yanovskaya, M.I., and Roginskaya, Yu.E., Elektrokhimiya, 1987, vol. 23, p. 1516.

    Google Scholar 

  7. Evdokimov, S.V. and Gorodetskii, V.V., Elektrokhimiya, 1989, vol. 25, p. 1139.

    Google Scholar 

  8. Gorodetskii, V.V., Evdokimov, S.V., and Kolotyrkin, Ya.M., Itogi Nauki Tekh., Ser. Elektrokhimiya, 1991, vol. 34, p. 84.

    Google Scholar 

  9. Heidrich, G.-Y., Podlovchenko, B.I., and Müller, L., Elektrokhimiya, 1988, vol. 24, p. 1119.

    Google Scholar 

  10. Müller, L. and Heidrich, G.-Y., Elektrokhimiya, 1989, vol. 25, p. 1145.

    Google Scholar 

  11. Muller, L., Heidrich, G.-Y., and Podlovchenko, B., J. Appl. Electrochem., 1990, vol. 20, p. 686.

    Google Scholar 

  12. Podlovchenko, B.I., Maksimov, Yu.M., Heidrich, G.-Y., et al., Elektrokhimiya, 1991, vol. 27, p. 864.

    Google Scholar 

  13. Schonfuss, D. and Muller, L., Electrochim. Acta, 1994, vol. 39, p. 2097.

    Google Scholar 

  14. Schönfu, D., Spitzer, H.-J., and Müller, L., Elektrokhimiya, 1995, vol. 31, p. 1008.

    Google Scholar 

  15. Chirkov, Yu.G., Elektrokhimiya, 2000, vol. 36, p. 526.

    Google Scholar 

  16. Chirkov, Yu.G. and Chernenko, A.A., Elektrokhimiya, 2001 (in press).

  17. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001 (in press).

  18. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 336.

    Google Scholar 

  19. Chirkov, Yu.G. and Pshenichnikov, A.G., Elektrokhimiya, 1984, vol. 20, p. 1542.

    Google Scholar 

  20. Chirkov, Yu.G. and Pshenichnikov, A.G., Itogi Nauki Tekh., Ser. Elektrokhimiya, 1988, vol. 27, p. 199.

    Google Scholar 

  21. Chirkov, Yu.G., Elektrokhimiya, 1971, vol. 7, p. 1512.

    Google Scholar 

  22. Chirkov, Yu.G., Elektrokhimiya, 1971, vol. 7, p. 1681.

    Google Scholar 

  23. Chirkov, Yu.G., Elektrokhimiya, 1972, vol. 8, p. 567.

    Google Scholar 

  24. Chirkov, Yu.G., Elektrokhimiya, 1972, vol. 8, p. 723.

    Google Scholar 

  25. Chirkov, Yu.G., Elektrokhimiya, 1972, vol. 8, p. 1074.

    Google Scholar 

  26. Chirkov, Yu.G., Elektrokhimiya, 1972, vol. 8, p. 1195.

    Google Scholar 

  27. Chirkov, Yu.G. and Pshenichnikov, A.G., Elektrokhimiya, 1994, vol. 30, p. 941.

    Google Scholar 

  28. Roginskaya, Yu.E. and Morozova, O.V., Electrochim. Acta, 1995, vol. 40, p. 817.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Gas-Generating Porous Electrodes: Effect of the Porous Space Structure on Polarization Curves. Russian Journal of Electrochemistry 37, 353–362 (2001). https://doi.org/10.1023/A:1016617804777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016617804777

Keywords

Navigation