Skip to main content
Log in

Trigenomic origin of the hexaploid Psammopyrum athericum (Triticeae: Poaceae) revealed by in-situ hybridization

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The genomic constitution of the hexaploid Psammopyrum athericum was studied with in-situ DNA hybridization using both genomic DNA and isolated cloned sequences as probes. A genomic probe from Thinopyrum bessarabicum (E genome) hybridized successfully to 14 chromosomes of Ps. athericum and a probe from Festucopsis serpentinii (L genome) hybridized to another 14 chromosomes. The remaining chromosomes did not hybridize, apart from in the centromeric region, to any of the genomic probes used. It is thus proposed that Ps. athericum contains the genomes E, L and X where X stands for a so-far unknown genome. Psammopyrum athericum has three pairs of pTa71 sites and approximately 30 pSc119:2 sites. The origin of the third genome will be a matter for further research using genomic and genome-specific probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anamthawat-Jonsson K, Reader SM (1995) Pre-annealing of total genomic DNA probes for simultaneous genomic in situ hybridization in cereal species. Genome 38: 81–816.

    Google Scholar 

  • Anamthawat-Jo¨ nsson K, Heslop-Harrison JS, Schwarzacher T (1996) Genomic in situ hybridization for whole chromosome and genome analysis. In: Clark M, ed. In Situ Hybridization: A Laboratory Companion. London: Chapman & Hall, pp 1-23.

    Google Scholar 

  • Bothmer von R, Flink J, LandstrÎm T (1986) Meiosis in interspeci¢c Hordeum hybrids I. Diploid combinations. Can J Genet Cytol 28: 52–535.

    Google Scholar 

  • Bothmer von R, Flink J, LandstrÎm T (1987) Meiosis in Hordeum interspeci¢c hybrids II. Triploids hybrids. Evol Trends Plants 1: 4–50.

    Google Scholar 

  • Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S 25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38: 9–96.

    Google Scholar 

  • Cauderon Y (1966) Genome analysis in the genus Agropyron. Hereditas suppl. 2: 21–234.

  • Dewey DR (1984) The genomic system of classi¢cation as a guide to intergeneric hybridization with the perennial Triticeae. In: Gusta£on JP, ed. Gene Manipulation in Plant Improvement. New York: Plenum Publ. Corp., pp. 20–279.

    Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7: 186–1885.

    Google Scholar 

  • Hsiao C, Wang RR-C, Dewey DR (1986) Karyotype analysis and genome relationships of 22 diploid species of the tribe Triticeae. Can J Genet Cytol 28: 10–120.

    Google Scholar 

  • Humphries CJ (1980) 57. Hordeum L. In: Tutin TGet al., eds Flora Europaea, Cambridge: Cambridge University Press, 5: 20–205.

    Google Scholar 

  • Jarvie JK, Barkworth ME (1990) Isozyme similarity in Thino-pyrum and its relatives (Triticeae: Gramineae). Genome 33: 88–891.

    Google Scholar 

  • Jauhar PP (1990)Multidisciplinary approach to genome analy-sis in the diploid species, Thinopyrum bessarabicum and Th. elongatum (Lophopyrum elongatum), of the Triticeae. Theor Appl Genet 80: 52–536.

    Google Scholar 

  • Kihara H (1930) Genome analysis of Triticum and Aegilops. Cytologia 1: 26–270.

    Google Scholar 

  • Leendertse PC, Rozema J, Andrea A (1997) Effects of nitrogen addition on the growth of the salt marsh grass Elymus athericus. J Coastal Conservation 3: 3–40.

    Google Scholar 

  • Linc G, Friebe BR, Kynast RG et al. (1999) Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42: 49–503.

    Google Scholar 

  • Linde-Laursen I, Ibsen E, von Bothmer R, Giese H (1992) Physical localization of active and inactive rRNA gene loci in Hordeum marinum spp. gussoneaeum (4x) by in situ hybridization. Genome 35: 103–1036.

    Google Scholar 

  • Linde-Laursen I, Seberg O, Frederiksen S, Baden C (1996) The karyotype of Festucopsis serpentinii (Poaceae, Triticeae) from Albania studied by banding techniques and in situ hybridization. Plant Syst Evol 201: 7–82.

    Google Scholar 

  • Linde-Laursen I, Heslop-Harrison JS, Shepherd KW, Taketa S (1997) The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommen-dation for barley chromosome nomenclature. Hereditas 126: 1-16.

    Google Scholar 

  • Liu Z-W, Wang RR-C (1992) Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geni-culata ssp. scytica and Thinopyrum intermedium (Triticeae Gramineae). Genome 36: 10–111.

    Google Scholar 

  • Liu Z-W, Wang RR-C (1993) Genome constitutions of Thino-pyrum curvifolium, T. scirpeum, T. distichum, and T. junceum (Triticeae: Gramineae). Genome 36(4): 64–651.

    Google Scholar 

  • LÎve A (1986) Some taxonomical adjustments in eurasiatic wheatgrasses. VerÎff. Geobot. Inst. ETH, Stiftung Rubel, Zurich 87: 4–52.

    Google Scholar 

  • Lu B-R (1993) Biosystematic investigations of Asiatic wheatgrasses Elymus L. (Triticeae: Poaceae). PhD thesis. The Swedish University of Agricultural Sciences.

  • Lu B-R, von Bothmer R (1993) Genomic constitution of four Chinese endemic Elymus species: E. brevipes, E. yangii, E. anthosachnoides, and E. altissimus (Triticeae, Poaceae). Genome 36: 86–876.

    Google Scholar 

  • Majtkowski W (1994) Utilization of grass ecotypes for recultivation. Evaluation and exploitation of genetic resources: prebreeding. Proc Gen Res SectMeeting Eucarpia 1–18 March 1994, Clermond-Ferrand, France. pp 20–215.

  • McIntyre CL, Clarke BC, Appels R (1988) Ampli¢cation and dispersion of repeated DNA sequences in the Triticeae. Plant Syst Evol 160: 3–59.

    Google Scholar 

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Sec-ale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33: 63–640.

    Google Scholar 

  • Melderis A (1980a) 47. Leymus Hochst. In: Tutin TG et al. ed. Flora Europaea, Cambridge: Cambridge University Press, 5: 19–192.

    Google Scholar 

  • Melderis A (1980b) 48. Elymus L. In: Tutin TG et al. ed. Flora Europaea, Cambridge: Cambridge University Press, 5: 19–198.

    Google Scholar 

  • Òrgaard M, Anamthawat-Jo¨ nsson K (2000) Genome discrimi-nation in two Elymus and one Elytrigia species (Poaceae: Triticeae) from Iceland by in situ hybridization. Genome (In press).

  • Òrgaard M, Heslop-Harrison JS (1994) Relationships between species of Leymus Psathyrostachys, and Hordeum (Poaceae, Triticeae) inferred from Southern hybridization of genomic and cloned probes. Plant Syst Evol 189: 21–231.

    Google Scholar 

  • Schwarzacher T, Leitch A (1994) Enzymatic treatment of plant material to spread chromosomes for in situ hybridization. In: Isaac PG, ed. Methods in Molecular Biology 28: Protocols for Nucleic Acid Analysis by Nonradioactive Probes. Totowa: Humana Press Inc, pp 15–160.

    Google Scholar 

  • Schwarzacher T, Wang ML, Leitch AR, Miller AR, Moore G, Heslop-Harrison JS (1997) Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. Theor Appl Genet 94: 9–97.

    Google Scholar 

  • Wang RR-C, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1997) Genome symbols in the Triticeae (Poaceae). In: Wang RR-C, Jensen KB, Jaussi C, ed. Proceedings of the 2nd International Triticeae Sym-posium, Logan, Utah, pp 2–34.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellneskog-Staam, P., Salomon, B., von Bothmer, R. et al. Trigenomic origin of the hexaploid Psammopyrum athericum (Triticeae: Poaceae) revealed by in-situ hybridization. Chromosome Res 9, 243–249 (2001). https://doi.org/10.1023/A:1016604705296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016604705296

Navigation