Skip to main content

A Brief History of R 0 and a Recipe for its Calculation

Abstract

In this paper I present the genesis of R 0 in demography, ecology and epidemiology, from embryo to its current adult form. I argue on why it has taken so long for the concept to mature in epidemiology when there were ample opportunities for cross-fertilisation from demography and ecology from where it reached adulthood fifty years earlier. Today, R 0 is a more fully developed adult in epidemiology than in demography. In the final section I give an algorithm for its calculation in heterogeneous populations.

This is a preview of subscription content, access via your institution.

REFERENCES

  • Aitchison, J. and G.S. Watson (1988). A not-so-plain tale from the Raj. In: The Influence of Scottish Medicine. D.A. Dow (ed.). Parthenon, Carnforth, pp 113-128.

    Google Scholar 

  • Anderson, R.M. (1981). Population ecology of infectious diseases. In: Theoretical Ecology. R.M. May (ed.). Blackwell, Oxford. pp. 318-355.

    Google Scholar 

  • Anderson, R.M. and R.M. May (1979a). Population biology of infectious diseases. Part I. Nature 280: 361-367.

    Google Scholar 

  • Anderson, R.M. and R.M. May (1979b). Population biology of infectious diseases. Part II. Nature 280: 455-461.

    Google Scholar 

  • Anderson, R.M. and R.M. May (1982a). Directly transmitted infectious diseases: control by vaccination. Science 215: 1053-1060.

    Google Scholar 

  • Anderson, R.M. and R.M. May (eds.) (1982b). Population Biology of Infectious Diseases. Springer-Verlag, Berlin.

    Google Scholar 

  • Anderson, R.M. and R.M. May (1991). Infectious Diseases of Humans: transmission and control. Oxford University Press, Oxford.

    Google Scholar 

  • Bailey, N.J.T. (1953). The total size of a general stochastic epidemic. Biometrika 40: 177-185.

    Google Scholar 

  • Bailey, N.J.T. (1957). Mathematical Theory of Epidemics. Griffin, London.

    Google Scholar 

  • Bartlett, M.S. (1955). An Introduction to Stochastic Processes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Barucha-Reid, A.T. (1956). On the stochastic theory of epidemics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Volume IV: Biology and Problems of Health, J. Neyman (ed.). University of California Press, Berkeley. pp. 111-119.

    Google Scholar 

  • Becker, N. (1975). The use of mathematical models in determining vaccination policies. Bulletin of the International Statistics Institute 46: 478-490.

    Google Scholar 

  • Begon, M., J. L. Harper and C. R. Townsend (1998). Ecology: Individuals, Populations and Communities. 3rd edition. Blackwell Science, Oxford.

    Google Scholar 

  • Bockh, R. (1886). Statistsiches Jahrbuch der Stadt Berlin, Volume 12, Statistik des Jahres 1884. P. Stankiewicz, Berlin.

    Google Scholar 

  • Diekmann, O. and J.A.P. Heesterbeek (2000). Mathematical Epidemiology of Infectious Diseases: model building, analysis and interpretation. John Wiley and Sons, Chichester.

    Google Scholar 

  • Diekmann, O., J.A.P. Heesterbeek and J.A.J. Metz (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28: 365-382.

    Google Scholar 

  • Dietz, K. (1975). Transmission and control of arboviruses. In: Epidemiology, D. Ludwig and K.L. Cooke (eds.). SIAM, Philadelphia. pp. 104-121.

    Google Scholar 

  • Dietz, K. (1988). The first epidemic model: a historical note on P.D. En'ko. Australian Journal of Statistics 30A: 56-65.

    Google Scholar 

  • Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research 2: 23-41.

    Google Scholar 

  • Dietz, K. (1995). Some problems in the theory of infectious disease transmission and control. In: Epidemic Models: their Structure and Relation to Data, D. Mollison (ed.). Cambridge University Press, Cambridge, pp. 3-16.

    Google Scholar 

  • Dietz, K., L. Molineaux and A. Thomas (1974). A malaria model tested in the African Savannah. Bulletin of the World Health Organization 50: 347-357.

    Google Scholar 

  • Dublin, L.I. and A.J. Lotka (1925). On the true rate of natural increase. Journal of the American Statistical Association 150: 305-339.

    Google Scholar 

  • En'ko, P.D. (1889). On the course of epidemics of some infectious diseases. Vrach. St. Petersburg, X, 1008-1010, 1039–1042, 1061–1063 (in Russian). English translation by K. Dietz, 1989. International Journal of Epidemiology 18: 749–755.

    Google Scholar 

  • Feller, W. (1941). On the integral equation of renewal theory. Annals of Mathematical Statistics 12: 243-267.

    Google Scholar 

  • Fine, P.E.M. (1975). Ross's a priori pathometry -a perspective. Proceeding of the Royal Society of Medicine 68: 547-551.

    Google Scholar 

  • Fine, P.E.M. and J.A. Clarkson (1982). Measles in England and Wales. International Journal of Epidemiology 11: 5-14 (part I), 15–25 (part II).

    Google Scholar 

  • Harvey, W.F. (1943). Anderson Gray McKendrick. Edinburgh Medical Journal 50: 500-506.

    Google Scholar 

  • Heesterbeek, J.A.P. (1992). R 0. PhD Thesis. University of Leiden.

  • Heesterbeek, J.A.P. and K. Dietz (1996). The concept of R 0 in epidemic theory. Statistica Neerlandica 50: 89-110.

    Google Scholar 

  • Hethcote, H.W. (1975). Mathematical models for the spread of infectious diseases. In: Epidemiology, D. Ludwig and K.L. Cooke (eds.). SIAM, Philadelphia. pp. 122-131.

    Google Scholar 

  • Kermack, W.O. and A.G. McKendrick (1927). Contributions to the mathematical theory of epidemics-I. Proceedings of the Royal Society of Medicine 115A: 700-721 (reprinted in Bulletin of Mathematical Biology 53: 33–55, 1991).

    Google Scholar 

  • Kingsland, S.E. (1985). Modeling Nature: episodes in the history of population ecology. University of Chicago Press, Chicago.

    Google Scholar 

  • Knibbs, G.H. (1917). Mathematical theory of population, of its character and fluctuations, and of the factors which influence them. Appendix to Census of the Commonwealth of Australia. McCarron, Bird & Co, Melbourne.

    Google Scholar 

  • Kuczynski, R.R. (1932). Fertility and Reproduction. Falcon Press, New York.

    Google Scholar 

  • Kuczynski, R.R. (1935). The Measurement of Population Growth. Sidgwick and Jackson, London.

    Google Scholar 

  • Lotka, A.J. (1907). Relation between birth rates and death rates. Science 26: 21-22.

    Google Scholar 

  • Lotka, A.J. (1913). A natural population norm. J. Washington. Acad. Science 3: 241-293.

    Google Scholar 

  • Lotka, A.J. (1919). A contribution to quantitative epidemiology. Journal of the Washington Academy of Science 9: 73-77.

    Google Scholar 

  • Lotka, A.J. (1923). Contribution to the analysis of malaria epidemiology. I: General part. Supplement to American Journal of Hygiene 3: 1-37 (parts II to V in same volume).

    Google Scholar 

  • Lotka, A.J. (1925a). The measure of net fertility. Journal of the Washington Academy of Science 15: 469-472.

    Google Scholar 

  • Lotka, A.J. (1925b). Elements of Physical Biology. Williams and Wilkins Company, Baltimore.

    Google Scholar 

  • Macdonald, G. (1952). The analysis of equilibrium in malaria. Tropical Diseases Bulletin 49: 813-829.

    Google Scholar 

  • Macnamara, F.N. (1955). Man as the host of yellow fever virus. Dissertation for M.D. degree, University of Cambridge.

  • May, R.M. (1976). Estimating r: a pedagogical note. American Naturalist 110: 469-499.

    Google Scholar 

  • May, R.M. (1981). Models for single populations. In: Theoretical Ecology. R.M. May (ed.). Blackwell, Oxford. pp. 30-52.

    Google Scholar 

  • Nye, E.R. and M.E. Gibson (1997). Ronald Ross, Malariologist and Polymath, a Biography. Macmillan Press, London.

    Google Scholar 

  • Ross, R. (1911). The Prevention of Malaria. 2nd edition. John Murray, London.

    Google Scholar 

  • Ross, R. (1916). An application of the theory of probabilities to the study of a priori pathometry -Part I. Proceedings of the Royal Society London A 42: 204-230.

    Google Scholar 

  • Ross, R. and H.P. Hudson (1917a). An application of the theory of probabilities to the study of a priori pathometry -Part II. Proceedings of the Royal Society London A 43: 212-225.

    Google Scholar 

  • Ross, R. and H.P. Hudson (1917b). An application of the theory of probabilities to the study of a priori pathometry -Part III. Proceedings of the Royal Society London A 43: 225-240.

    Google Scholar 

  • Samuelson, P.A. (1977). Resolving a historical confusion in population analysis. In: Mathematical Demography, selected papers, D. Smith and N. Keyfitz (eds.). Springer-Verlag, Berlin. pp. 109-130.

    Google Scholar 

  • Sharpe, F.R. and A.J. Lotka (1911). A problem in age distribution. Philosophical Magazine 21: 435-438.

    Google Scholar 

  • Smith, C.E.G. (1964). Factors in the transmission of virus infections from animal to man. Scientific Basis of Medicine Annual Review 1964. pp. 125-150.

    Google Scholar 

  • Smith, D. and N. Keyfitz (eds.) (1977). Mathematical Demography, selected papers. Springer-Verlag, Berlin.

    Google Scholar 

  • Thompson, W.R. (1923). La théorie mahématique de l'action des parasites entomophages. Revue Générale des Sciences Pures et Appliqueés 34: 202-210.

    Google Scholar 

  • Whittle, P. (1955). The outcome of a stochastic epidemic -a note on Bailey's paper. Biometrica 42: 116-122.

    Google Scholar 

  • Yorke, J.A., N. Nathanson, G. Pianigiani and J. Martin (1979). Seasonality and the requirements for perpetuation and eradication of viruses in populations. American Journal of Epidemiology 109: 103-123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heesterbeek, J. A Brief History of R 0 and a Recipe for its Calculation. Acta Biotheor 50, 189–204 (2002). https://doi.org/10.1023/A:1016599411804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016599411804

Keywords

  • Final Section
  • Heterogeneous Population
  • Ample Opportunity
  • Adult Form