Skip to main content
Log in

Surface-modified 3D scaffolds for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this work was to use sol–gel processing to develop bioactive materials to serve as scaffolds for tissue engineering that will allow the incorporation and release of proteins to stimulate cell function and tissue growth. We obtained organofunctionalized silica with large content of amine and mercaptan groups (up to 25%). The developed method can allow the incorporation and delivery of proteins at a controlled rate. We also produced bioactive foams with binary SiO2–CaO and ternary SiO2–CaO–P2O5 compositions. In order to enhance peptide–material surface properties, the bioactive foams were modified with amine and mercaptan groups. These materials exhibit a highly interconnected macroporous network and high surface area. These textural features together with the incorporation of organic functionally groups may enable them to be used as scaffolds for the engineering of soft tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Senuma, S. Franceschin and J. G. Hilborn, Biomaterials 21 (2000) 1135.

    PubMed  Google Scholar 

  2. M. H. Sheridan, L. D. Shea, M. C. Peters and D. J. Mooney, J. Control. Rel. 64 (2000) 91.

    Google Scholar 

  3. L. L. Hench, D. L. Wheeler and D. C. Greenspan, J. Sol-Gel Sci. Technol. 13 (1998) 245.

    Google Scholar 

  4. P. Ducheyne and Q. Qiu, Biomaterials 20 (1999) 2287.

    PubMed  Google Scholar 

  5. B. K. Mann, A. T. Tsai, T. Scott-Burden and J. L. West, ibid. 20 (1999) 2281.

    PubMed  Google Scholar 

  6. H. S. Mansur, W. L. Vasconcelos, R. F. S. Lenza, R. L. OrÉfice, E. F. Reis and Z. P. Lobato, J. Non-Cryst. Solids 273 (2000) 109.

    Google Scholar 

  7. J. Parrado, F. Millan and J. Bautista, Process Biochem. 30 (1995) 735.

    Google Scholar 

  8. S. B. Nicoll, S. Radin, E. M. Santos, R. S. Tuan and P. Ducheyne, Biomaterials 18 (1997) 853.

    PubMed  Google Scholar 

  9. H. S. Mansur, R. L. OrÉfice, W. L. Vasconcelos, R. F. S. Lenza and Z. P. Lobato, J. Int. Feder. Med. Biol. Eng. 37 (1999) 372.

    Google Scholar 

  10. P. Sepulveda, J. Am. Cer. Soc. Bull. 76 (1997) 61.

    Google Scholar 

  11. R. F. S. Lenza and W. L. Vasconcelos, J. Non-Cryst. Solids 273 (2000) 164.

    Google Scholar 

  12. P. Sepulveda, J. R. Jones and L. L. Hench, J. Biomed. Mater. Res. (In press).

  13. P. Saravanapavan and L. L. Hench, J. Biomed. Mater. Res. 54 (2001) 608.

    PubMed  Google Scholar 

  14. M. M. Pereira, A. E. Clark and L. L. Hench, J. Mater. Synt. Process 2 (1994) 189.

    Google Scholar 

  15. Quantachrome Catalog-Autosorb 1, 12/97.

  16. S. Brunauer, I. S. Deming, W. S. Deming and E. Teller, J. Amer. Chem. Soc. 62 (1940) 1723.

    Google Scholar 

  17. C. J. Brinker and G. W. Scherer, in “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing” (Academic Press, San Diego, 1990) p. 907.

    Google Scholar 

  18. N. K. Raman, T. L. Ward, C. J. Brinker, R. Sehgal, D. M. Smith, Z. Duan and M. Hampden-Smith, Appl. Catal. A General 69 (1993) 65.

    Google Scholar 

  19. K. Kuraoka, Y. Chujo and T. Yazawa, J. Memb. Sci. 182 (2001) 139.

    Google Scholar 

  20. A. B. Jedlicka and A. G. Clare, J. Non-Cryst. Solids 28 (2001) 6.

    Google Scholar 

  21. D. M. Liu and I. W. Chen, Acta Mater. 18 (1999) 4535.

    Google Scholar 

  22. S. Joschek, B. Nies, R. Krotz and A. Gopferich, Biomaterials 21 (2000) 1645.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. S. Lenza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenza, R.F.S., Vasconcelos, W.L., Jones, J.R. et al. Surface-modified 3D scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine 13, 837–842 (2002). https://doi.org/10.1023/A:1016592127407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016592127407

Keywords

Navigation