Skip to main content
Log in

Gradient Flows Computing the C-numerical Range with Applications in NMR Spectroscopy

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper gradient flows on unitary matrices are studied that maximize the real part of the C-numerical range of an arbitrary complex n×n-matrix A. The geometry of the C-numerical range can be quite complicated and is only partially understood. A numerical discretization scheme of the gradient flow is presented that converges to the set of critical points of the cost function. Special emphasis is taken on a situation arising in NMR spectroscopy where the matrices C,A are nilpotent and the C-numerical range is a circular disk in the complex plane around the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ando and C.-K. Li, editors. Special Issue: The Numerical Range and Numerical Radius, volume 37, 1–3 of Linear and Multilinear Algebra, pp. 1-238. Gordon and Breach, 1994.

  2. N. Bebiano and J. Da Providència, On the boundary of the C-numerical range of a normal matrix. Linear a nd Multilinear Algebra 23: 145–157, 1988.

    Google Scholar 

  3. R.W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems. In Proc. IEEE of the 27th Conference on Decision and Control, pages 799–803, Austin, TX, 12 1988. See also Lin. Algebra & Applic., 146: 79-91, 1991.

    Google Scholar 

  4. R.W. Brockett. Differential geometry and the design of gradient algorithms. In Proceedings of Symposia in Pure Mathematics, 54, pp. 69–91, 1993.

    Google Scholar 

  5. R.W. Brockett and N. Khaneja. On the stochastic control of quantum ensembles. System theory: modeling, analysis and control, 75–96, Kluwer Internat. Ser. Engrg. Comput. Sci., 518, Kluwer Academic Publishers, Boston, MA, 2000.

    Google Scholar 

  6. W.-S. Cheung and N.-K. Tsing, The C-numerical range of matrices is star-shaped. Linear and Multilinear Algebra, 41: 245–250, 1996.

    Google Scholar 

  7. J. Dazord. On the C-numerical range of a matrix. Lin. Algebra & Applic., 212/213: 21–29, 1994.

    Google Scholar 

  8. S.J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N.C. Nielsen, O.W. Sørensen and C. Griesinger, Unitary control in quantum ensembles: Maximizing signal intensity in coherent spectroscopy. Science, 280: 421–424, 1998.

    Google Scholar 

  9. M. Goldberg and E.G. Straus, Elementary inclusion relations for generalized numerical ranges. Lin. Algebra & Applic., 18: 1–24, 1977.

    Google Scholar 

  10. U. Helmke and J.B. Moore. Optimization and Dynamical Systems. CCES. Springer, London, 1994.

    Google Scholar 

  11. A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, and A. Zanna, Lie-group methods. Acta Numerica 9: 215–365, 2000.

    Google Scholar 

  12. C.-K. Li. C-numerical ranges and C-numerical radii. Linear and Multilinear Algebra 37(1-3): 51–82, 1994.

    Google Scholar 

  13. C.-K. Li and N.-K. Tsing, Matrices with circular symmetry on their unitary orbits and C-numerical ranges. Proceedings of the American Math. Soc. 111(1): 19–28, 1991.

    Google Scholar 

  14. S. Łojasiewicz. Sur les trajectoires du gradient d'une fonction analytique. Seminari di geometria 1982-1983, Università di Bologna, Istituto di Geometria, Dipartimento di Matematica, 1984.

  15. T. Schulte-Herbrüggen. Aspects and Prospects of High-Resolution NMR. PhD thesis, ETH Zürich, 1998. Diss. ETH No. 12752.

  16. O.W. Sørensen. Polarization transfer experiments in high-resolution NMR spectroscopy. Progress in NMR Spectroscopy21: 503–569, 1989.

    Google Scholar 

  17. J. Stoustrup, O. Schedletzky, S.J. Glaser, C. Griesinger, N.C. Nielsen, and O.W. Sørensen. Generalized bound on quantum dynamics: Efficiency of unitary transformations between nonhermitian states. Physical Review Letters 74(15): 2921–2924, 1995.

    Google Scholar 

  18. J. von Neumann. Some matrix-inequalities and metrization of matrix-spaces. Tomsk Univ. Rev. 1: 286–300, 1937.

    Google Scholar 

  19. J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmke, U., Hüper, K., Moore, J. et al. Gradient Flows Computing the C-numerical Range with Applications in NMR Spectroscopy. Journal of Global Optimization 23, 283–308 (2002). https://doi.org/10.1023/A:1016582714251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016582714251

Navigation