Skip to main content
Log in

N2O Decomposition over Fe/ZSM-5: Effect of High-Temperature Calcination and Steaming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

N2O decomposition over Fe/ZSM-5 made by the sublimation method was investigated. Further calcination or steaming treatment (700°C) increased the decomposition rate of N2O. FTIR showed that such treatments lead to the disappearance of Brønsted acid sites. The various catalysts have different apparent activation energies, confirming the presence of different active Fe species. The observation that after high-temperature calcination a higher activity is obtained while no dealumination occurs indicates a mechanism where neutral Fe oxide clusters occluded in the zeolite micropores react at high temperature with the zeolite protons to form [FeO]+-like species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M.M. Blauwhoff, J.W. Gosselink, E.P. Kieffer, S.T. Sie and W.H.J. Stork, in: Catalysis and Zeolites: Fundamentals and Applications, eds. J. Weitkamp and L. Puppe (Springer, Berlin, 1999) ch. 7.

    Google Scholar 

  2. X. Feng and W.K. Hall, Catal. Lett. 41 (1996) 45.

    Google Scholar 

  3. X. Feng and W.K. Hall, J. Catal. 166 (1997) 368.

    Google Scholar 

  4. H.-Y. Chen and W.M.H. Sachtler, Catal. Today 42 (1998) 73.

    Google Scholar 

  5. H.-Y. Chen and W.M.H. Sachtler, Catal. Lett. 50 (1998) 125.

    Google Scholar 

  6. H.-Y. Chen, T.V. Voskoboinikov and W.M.H. Sachtler, J. Catal. 180 (1998) 171.

    Google Scholar 

  7. T.V. Voskoboinikov, H.-Y. Chen and W.M.H. Sachtler, Appl. Catal. B 19 (1998) 279.

    Google Scholar 

  8. Q. Sun, Z.-X. Gao, H.-Y. Chen and W.M.H. Sachtler, J. Catal. 201 (1998) 89.

    Google Scholar 

  9. G.I. Panov, V.I. Sobolev and A.S. Kharitonov, J. Mol. Catal. 61 (1990) 85.

    Google Scholar 

  10. V.I. Sobolev, G.I. Panov, A.S. Kharitonov, V.N. Romannikov, A.M. Volodin and K.G. Ione, J. Catal. 139 (1993) 435.

    Google Scholar 

  11. V.I. Sobolev, K.A. Dubkov, E.A. Paukshtis, L.V. Pirutko, M.A. Rodkin, A.S. Kharitonov and G.I. Panov, Appl. Catal A. 141 (1996) 185.

    Google Scholar 

  12. G.I. Panov, V.I. Sobolev, K.A. Dubkov, V.N. Parmon, N.S. Ovanesyan, A.E. Shilov and A.A. Shteinman, React. Kinet. Catal. Lett. 61 (1997) 251.

    Google Scholar 

  13. K.A. Dubkov, V.I. Sobolev, E.P. Talsi, M.A. Rodkin, N.H. Watkins, A.A. Shteinman and G.I. Panov, J. Mol. Catal. 123 (1997) 155.

    Google Scholar 

  14. G.I. Panov, V.I. Sobolev, K.A. Dubkov and A.S. Kharitonov, Stud. Surf. Sci. Catal. 101 (1996) 493.

    Google Scholar 

  15. P. Marturano, L. Drozdová, A. Kogelbauer and R. Prins, J. Catal. 192 (2000) 236.

    Google Scholar 

  16. A.A. Battiston, J.H. Bitter and D.C. Koningsberger, Catal. Lett. 66 (2000) 75.

    Google Scholar 

  17. H.-Y. Chen, El-M. El-Malki, X. Wang, R.A. van Santen and W.M.H. Sachtler, J. Mol. Catal. 162 (2000) 159.

    Google Scholar 

  18. R. Joyner and M. Stockenhuber, J. Phys. Chem. B. 103 (1999) 5963.

    Google Scholar 

  19. L.J. Lobree, I.-C. Hwang, J.A. Reimer and A.T. Bell, J. Catal. 186 (1999) 242.

    Google Scholar 

  20. El-M. El-Malki, R.A. van Santen and W.M.H. Sachtler, Microporous Mesoporous Mater. 35–36 (2000) 235.

    Google Scholar 

  21. El-M. El-Malki, R.A. van Santen and W.M.H. Sachtler, J. Catal. 196 (2000) 212.

    Google Scholar 

  22. G. Centi and F. Vazzana, Catal. Today 53 (1998) 683.

    Google Scholar 

  23. F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmam, in: Advanced Inorganic Chemistry (Wiley, New York, 1999) p. 778.

    Google Scholar 

  24. J. Dědeček, D. Kaucky and B. Wichterlová. Chem. Commun. 11 (2001) 970.

    Google Scholar 

  25. F. Kapteijn, J. Rodríguez-Mirasol and J.A. Moulijn, J. Catal. 167 (1997) 256.

    Google Scholar 

  26. El-M. El-Malki, R.A. van Santen and W.M.H. Sachtler, J. Phys. Chem. B 103 (1999) 4611.

    Google Scholar 

  27. P. Marturano, A. Kogelbauer and R. Prins, J. Catal. 190 (2000) 460.

    Google Scholar 

  28. P.O. Fritz and J.H. Lunsford, J. Catal. 118 (1989) 85.

    Google Scholar 

  29. J.L. Motz, H. Heinichen and W.F. Hölderich, J. Mol. Catal. 136 (1998) 175.

    Google Scholar 

  30. D. Goldfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan and H. Thomann, J. Am. Chem. Soc. 116 (1994) 6344.

    Google Scholar 

  31. A. Ribera, I.W.C.E. Arends, S. de Vries, J. Pérez-Ramírez and R.A. Sheldon, J. Catal. 195 (2000) 287.

    Google Scholar 

  32. A.V. Kucherov, C.N. Montreuil, T.N. Kucherova and M. Shelf, Catal. Lett. 56 (1998) 173.

    Google Scholar 

  33. B. Angelika, in: Spectroscopy of Transition Metal Ions on Surfaces, eds. B.M. Weckhuysen, P. Van Der Voort and G. Catana (Leuven University Press, Leuven, 1990), p. 69.

    Google Scholar 

  34. A.M. Volodin, V.I. Sobolev and G.M. Zhidomirov, Kinet. Catal. 39 (1998) 844.

    Google Scholar 

  35. X. Feng and W.K. Hall, Catal. Lett. 52 (1997) 13.

    Google Scholar 

  36. F. Kapteijn, J. Rodríguez-Mirasol and J.A. Moulijn, Appl. Catal. B 9 (1996) 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Mojet, B., Janssen, R. et al. N2O Decomposition over Fe/ZSM-5: Effect of High-Temperature Calcination and Steaming. Catalysis Letters 81, 205–212 (2002). https://doi.org/10.1023/A:1016581107432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016581107432

Navigation