, Volume 471, Issue 1–3, pp 125–131 | Cite as

Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli

  • M. J. Risk
  • J. M. Heikoop
  • M. G. Snow
  • R. Beukens


A subfossil fragment of the deep-sea gorgonian coral Primnoa resedaeformis was 14C AMS dated along a radial growth transect. Dates ranged from 2600±50 at the outside, to 2920±60 14C years BP near the interior, suggesting an age of <300 years. The avergae radial growth was approximately 0.044 mm.yr−1. Based on comparisons with live-collected specimens, we estimate the entire colony may have been about 0.5–0.75 m tall, with a linear tip extension rate of 1.5–2.5 mm.yr−1. Towards the centre of the main stem, the coral skeleton is composed of alternating couplets, 200 μm in width, of gorgonin (a horn-like organic skeletal protein) and calcite. We believe these couplets are annual. Within this larger scale of banding are finer couplets of gorgonin and calcite, with frequencies suggesting lunar monthly periodicity. Both scales of banding may reflect fluctuations in food supply from sinking POM, or from tidally-resuspended bottom POM, along with benthic consumers. Outer skeletal growth is predominantly massive calcite with intermittent gorgonin layers. If carbonate precipitation in this zone were continuous, approximately 25 μm radial growth would be deposited every year. The Scleractinian Desmophyllum cristagalli lives to <200 years, and has rates of linear extension of 0.5–1.0 mm.yr−1. The skeletons show growth bands approximately 10 μm wide, which may be annual. Due to tissue extension and retraction in life, parts of the skeleton may be overgrown, or suffer dissolution. Although we have shown in previous publications that sea water temperatures may be obtained from analysis of this coral, periods of skeletal dissolution, coupled with isotopic disequilibrium, will make obtaining long climatic records extremely difficult.

Desmophyllum cristagalli Primnoa resedaeformis deep-water corals growth rates gorgonians 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, A. H., E. E. Cordes, M. M. Mahoney, K. Munk, K. H. Coale, G. M. Cailliet & J. Heifetz, 2002. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471: 101–110.Google Scholar
  2. Barnes, D. J. & J. M. Lough, 1993. On the nature and causes of density banding in massive coral skeletons. J. exp. mar. Biol. Ecol. 167: 91–108.Google Scholar
  3. Boerboom, C. M., J. E. Smith & M. J. Risk, 1998. Bioerosion and micritization in the deep-sea coral Desmophyllum cristagalli. Historical Biol. 13: 53–60.Google Scholar
  4. Breeze, H., D. S. Davis, M. Butler & V. Kostylev, 1997. Distribution and status of deep sea corals off Nova Scotia. Marine Issues Committee Special Publication Number 1. Ecology Action Centre, Halifax, Canada: 58 pp.Google Scholar
  5. Cimberg, R. T., T. Gerrodette & K. Muzik, 1981. Habitat requirements and expected distribution of Alaska coral. Report prepared for Office of Marine Pollution Assessment, Alaska Office, Research Unit # 601.Google Scholar
  6. Davis, D. S., 1997. Species Status Sheet Systematic No. 038.05.11 (Primnoa resedaeformis). Nova Scotia Museum of Natural History.Google Scholar
  7. Druffel, E. R., L. L. King, R. A. Belastock & K. O. Buessler, 1990. Growth rate of a deep-sea coral using 210Pb and other isotopes. Geochim. Cosmochim. Acta 54: 1493–1500.Google Scholar
  8. Druffel, E. R., S. Griffin, A. Witter, E. Nelson, J. Southon, M. Kashgarian & J. Vogel, 1995. Gerardia: Bristlecone pine of the deep sea? Geochim. Cosmochim. 59: 5031–5036.Google Scholar
  9. Griffin, S. & E. R. Druffel, 1989. Sources of carbon to deep-sea Corals. Radiocarbon 31: 533–543.Google Scholar
  10. Heikoop, J. M., M. J. Risk, A. V. Lazier & H. P. Schwarcz, 1998. δ 18O and δ13C of a deep-sea gorgonian coral from the Atlantic coast of Canada. EOS v. 79, no. 17 (supplement) p. S179.Google Scholar
  11. Heikoop, J. M., M. J. Risk & H. P. Schwarcz, 1998. Stable isotopes of C and N in tissue and skeletal organics of a deep-sea gorgonian coral from the Atlantic coast of Canada: dietary and potential climate signals. Abstract with Programs v. 30 no. 7, Geol. Soc. Amer. Annual Meeting, p. A-317.Google Scholar
  12. Heikoop, J. M., M. J. Risk, D. D. Hickmott, C. K. Shearer & R. Beukens (this volume) Potential climate signals from the deepsea coral Primnoa resedaeformis.Google Scholar
  13. Lazier, A., J. E. Smith, M. J. Risk & H. P. Schwarcz, 1999. The skeltal structure of Desmophyllum cristagalli: the use of deepwater corals in sclerochronology. Lethaia 32: 119–130.Google Scholar
  14. Lewis, J. C., T. F. Barnowski & G. J. Telesnicki, 1992. Characteristics of carbonates of gorgonian axes (Coelenterata, Octocorallia). Biol. Bull. 183: 278–296.Google Scholar
  15. Mortensen, P. B., M. Hovland, T. Brattegard & R. Farestveit, 1995. Deep water bioherms of the Scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian Shelf: structure and associated megafauna. Sarsia 80: 145–158.Google Scholar
  16. Risk, M. J. & T. H. Pearce, 1992. Interference imaging of daily growth bands in massive corals. Nature 358: 572–573.Google Scholar
  17. Smith, J. E., 1999. Climate reconstructions using deep-sea corals. Ph. D. thesis, McMaster University, Hamilton Ont. Canada.Google Scholar
  18. Smith, J. E., M. J. Risk, H. P. Schwarcz & T. A. McConnaughey, 1997. Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386: 818–820.Google Scholar
  19. Smith, J. E., M. Schleyer, M. J. Risk & H. P. Schwarcz, 1998. Paleotemperatures from azooxanthellate (deep-sea) corals. Geol. Soc. Amer. Abstracts with Programs A71.Google Scholar
  20. Smith, J. E., H. P. Schwarcz, M. J. Risk, T. A. McConnaughey & N. Keller, 2000. Paleotemperatures from deep-sea corals: overcoming ‘vital effects’. PALAIOS 15: 25–32.Google Scholar
  21. Stanley, G. D. Jr. & S. D. Cairns, 1988. Constructional azooxanthellate coral communities: an overview with implications for the fossil record. PALAIOS 3: 233–242.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. J. Risk
    • 1
  • J. M. Heikoop
    • 2
  • M. G. Snow
    • 2
  • R. Beukens
    • 3
  1. 1.Canada
  2. 2.Los Alamos National Laboratory, EES-1, MSD462Los AlamosU.S.A.
  3. 3.Department of PhysicsUniversity of TorontoCanada

Personalised recommendations