, Volume 473, Issue 1–3, pp 23–45 | Cite as

Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics

  • Roy A. Schroeder
  • William H. Orem
  • Yousif K. Kharaka


The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (∼44 000 mg l−1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr−1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

nutrients selenium bottom sediments interstitial water closed lakes Salton Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspila, K. I., H. Agemian & A. S. Y. Chau, 1976. A semi-automated method for the determination of inorganic, organic, and total phosphate in sediments. The Analyst 101: 187-197.PubMedGoogle Scholar
  2. Broecker, W. S., 1974. Chemical Oceanography: Harcourt Brace Javanovich, Inc. 214 pp.Google Scholar
  3. Berner, R. A., 1980. Early Diagenesis, a Theoretical Approach: Princeton University Press, Princeton, New Jersey: 250 pp.Google Scholar
  4. Callender, E. & P. C. Van Metre, 1997. Reservoir sediment cores show U.S. lead declines: Envir. Sci. Technol. 31: 424-428.Google Scholar
  5. Calvert, S. E., 1976. The mineralogy and geochemistry of nearshore sediments. In Riley, J. P. & R. Chester (eds), Chemical Oceanography, Vol. 6., 2nd edn. Academic Press, New York: 187-280.Google Scholar
  6. Carpelan, L. H., 1961. Physical and chemical characteristics. In Walker, B. W. (ed.), The Ecology of the Salton Sea, in Relation to the Sportfishery. Calif. Game and Fish Bull. No. 113: 17-32Google Scholar
  7. Cohen, M. J., J. I. Morrison & E. P. Glenn, 1999. Hazard or haven: the ecology and future of the Salton Sea. Pacific Inst. for Studies in Develop., Environ., and Ecology, Oakland, Calif.: 63 pp.Google Scholar
  8. Cooke, T. D. & K. W. Bruland, 1987. Aquatic chemistry of selenium: evidence of biomethylation. Envir. Sci. Technol. 21: 1214-1219.Google Scholar
  9. Dowd, M. J., 1956. History of Imperial Irrigation District and the development of Imperial Valley: Imperial Irrigation District Dowd Memorial Library, El Centro, Calif.: 94 pp.Google Scholar
  10. Engberg, R. E., 1999. Selenium budgets for Lake Powell and the Upper Colorado River Basin: J. am. Water Res. Ass. 35: 771-786.Google Scholar
  11. Engberg, R. A., D. W. Westcot, D. Delamore & D. D. Holz, 1998. Federal and state perspectives on regulation and remediation of irrigation-induced selenium problems. In Frankenberger, W. T. & R. A. Engberg (eds), Environmental Chemistry of Selenium. Marcel Dekker, Inc, New York, Chapter 1: 1-26.Google Scholar
  12. EPA, 1979. Methods for Chemical Analysis of Water and Waste: Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.Google Scholar
  13. Federal Water Quality Administration, 1970, Salton Sea California. Water Quality and Ecological Management Considerations: U.S. Department of the Interior, Federal Water Quality Administration, Pacific Southwest Region: 54 pp.Google Scholar
  14. Frankenberger, W. T. & R. A. Engberg (eds), 1998. Environmental Chemistry of Selenium. Marcel Dekker, Inc., New York: 713 pp.Google Scholar
  15. Guy, H. P., 1969. Laboratory theory and methods for sediment analysis: U.S. Geol. Survey Techniques of Water-Res. Invest. Book 5, Chapter C1: 58 pp.Google Scholar
  16. Hamilton, S. J., 1999. Hypothesis of historical effects from selenium on endangered fish in the Colorado River Basin. Human and Ecol. Risk Assess. 5: 1153-1180.Google Scholar
  17. Hely, A. G., G. H. Hughes & B. Ireland, 1966. Hydrologic Regime of the Salton Sea, California: U. S. Geol. Survey Prof. Paper 486-C: 32 pp.Google Scholar
  18. Iwatsubo, R. T., 1993. Stream water quality: California In Paulson, R. W., E. B. Chase, J. S. Williams & D. W. Moody (eds), National Water Summary 1990-91: Hydrologic events and stream water quality. U.S. Geol. Survey Water-Supply Paper 2400: 187-196.Google Scholar
  19. Jehl, J., Jr., 1996. Mass mortality events of eared grebes in North America. Am. J. Field Ornith. 67: 471-476.Google Scholar
  20. Kaiser, J., 1999. Battle over a dying sea: Science 284: 28-30.Google Scholar
  21. Kharaka, Y. K., J. J. Thordsen, R. A. Schroeder & J. G. Setmire, 2000. Nanofiltration used to remove selenium and other minor elements from wastewater. In Courtney, Y. (ed.), Minor Elements 2000. Soc. Mining, Metal. Explor: 371-380.Google Scholar
  22. Kharaka, Y. K., E. G. Kakouros & J. B. Miller, 2001. Natural and anthropogenic loading of dissolved selenium in Colorado River Basin. In Cidu, R. (ed.), Proc. 10th Internat. Symp. on Water-Rock Interaction, A. A. Balkema Publishers 2: 1107-1110.Google Scholar
  23. Klump, J. V. & C. S. Martens, 1981. Biogeochemical cycling in an organic rich coastal marine basin-II. Nutrient sediment-water exchange processes. Geochimica et Cosmochim. Acta 45: 101-121.Google Scholar
  24. Krom, M. D. & R. A. Berner, 1981. The diagenesis of phosphorus in a nearshore marine sediment: Geochimica et Cosmochim. Acta 45: 207-216.Google Scholar
  25. McCaffrey, R. J., A. C. Myers, E. Davey, R. Morrison, M. Bender, N. Luedtke, D. Cullen, P. Froelich & G. Klinkhammer, 1980. The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island. Limnol. Oceanogr. 25: 31-44.Google Scholar
  26. Meyers, P. A. & R. Ishiwatari, 1993. The early diagenesis of organic matter in lacustrine sediments. In Engel, M. H. & S. A. Macko (eds), Organic Geochemistry, Principles and Applications. Plenum Press, NY: 185-209.Google Scholar
  27. Michel, R. L. & R. A. Schroeder, 1994. Use of long-term tritium records from the Colorado River to determine timescales for hydrologic processes associated with irrigation in the Imperial Valley, California. Appl. Geochem. 9:387-401.Google Scholar
  28. Mueller, D. K. & L. L. Osen, 1988. Estimation of natural dissolved solids discharge in the Upper Colorado River Basin: U.S. Geol. Survey Water-Supply Paper 87-4069: 63 pp.Google Scholar
  29. NWIS web address is at http://water.usgs.gov/ca/nwis/qwdata/. (The interested reader can access the data from this web site using the station ID numbers listed in Table 1, or obtain the data directly from the senior author at the address listed in this report).Google Scholar
  30. Orem, W. H., H. E. Lerch & P. Rawlik, 1997. Geochemistry of surface and pore water at USGS coring sites in wetlands of south Florida: 1994 and 1995: U.S. Geol. Survey Open-File Rep. 97-454: 55 pp.Google Scholar
  31. Orem, W. H., C. W. Holmes, C. Kendall, H. E. Lerch, A. L. Bates, S. R. Silva, A. Boylan, M. Corum, M. Marot & C. Hedgman, 1999. Geochemistry of Florida Bay sediments: nutrient history at five sites in eastern and central Florida Bay. J. Coastal Res. 15: 1055-1071.Google Scholar
  32. Oremland, R. S., 1994. Biogeochemical transformations of selenium in anoxic environments. In Frankenburger, W. T. Jr. & Benson, Sally (eds), Selenium in the Environment. Marcel Dekker, Inc., New York, Chapter 8: 389-420.Google Scholar
  33. Parkhurst, D. L., 1995. User's guide to PHREEQC-a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations: U.S. Geol. Survey Water-Res. Invest. Rep. 95-4227: 143 pp.Google Scholar
  34. Pacific Institute, 2001. A proposal to preserve and enhance habitat at the Salton Sea: Pacific Institute for Studies in Development, Environment, and Security, 654 13th Street, Oakland, Calif.: 7 pp.Google Scholar
  35. Presser, T. S., M. A. Sylvester & W. H. Low, 1994. Bioaccumulation of selenium from natural geologic sources in Western States and its potential consequences. Envir. Manag. 18: 423-436.Google Scholar
  36. Riedel, R., L. Helvenston & B. Costa-Pierce, 2001. Fish biology and fisheries ecology of the Salton Sea. Final Report to the Salton Sea Authority under EPA grant Report # R826552-01-0.Google Scholar
  37. Schroeder, R. A., 1985. Sediment accumulation rates in Irondequoit Bay, New York based on lead-210 and cesium-137 geochronology: Northeastern Environ. Sci. 4: 23-29.Google Scholar
  38. Schroeder, R. A., 1996. Transferability of environmental assessments in the Salton Sea Basin, California, and other irrigated areas in the Western United States to the Aral Sea Basin, Uzbekistan. In Micklin, P. P. & W. D. Williams (eds), The Aral Sea Basin. Proc. of the NATO Advanced Research Workshop “Critical Scientific Issues of the Aral Sea Basin: State of Knowledge and Future Research Needs”. Tashkent, Uzbekistan, May 2-5, 1994. NATO ASI Series, Partnership Sub-Series, 2. Environment-v. 12, Springer-Verlag: 121-137.Google Scholar
  39. Schroeder, R. A. & W. H. Orem, 2000. Nutrient dynamics in the Salton Basin-implications from calcium, uranium, molybdenum, and selenium. Am. Geophys. U. Spring Meeting, Washington, D.C., May 30-June 3, 2000, EOS Trans. Suppl. 81, no. 19, Abstract no. H31B-02: p. S196.Google Scholar
  40. Schroeder, R. A., J. G. Setmire & J. C. Wolfe, 1988. Trace elements and pesticides in the Salton Sea area, California. In Proc. on Planning Now for Irrigation and Drainage. Irrigation Division, Am. Soc. Civil Eng., Lincoln, Nebraska, July 19-21, 1988. 700-707.Google Scholar
  41. Schroeder, R. A., M. Rivera, B. J. Redfield, J. N. Densmore, R. L. Michel, D. R. Norton, D. J. Audet, J. G. Setmire & S. L. Goodbred, 1993. Physical, chemical, and biological data for detailed study of irrigation drainage in the Salton Sea area, California, 1988-90. U.S. Geol. Survey Open-File Rep. 93-83: 179 pp.Google Scholar
  42. Setmire, J. G., 1984. Water quality in the New River from Calexico to the Salton Sea, Imperial County, California: U.S. Geol. Survey Water-Supply Paper 2212: 42 pp.Google Scholar
  43. Setmire, J. G. & R. A. Schroeder. 1998. Selenium and salinity concerns in the Salton Sea area of California. In Frankenberger, W. T., Jr & R. A. Engberg (eds), Environmental Chemistry of Selenium. Marcel Dekkar, Inc., New York, Chapter 12: 205-221.Google Scholar
  44. Setmire, J. G., J. C. Wolfe & R. K. Stroud, 1990. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87: U.S. Geol. Survey Water-Res. Invest. Rep. 89-4102: 68 pp.Google Scholar
  45. Setmire, J. G., S. L. Goodbred, D. J. Audet, R. A. Schroeder, W. R. Radke & J. N. Densmore, 1993. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, Imperial County, California, 1988-90: U.S. Geol. Survey Water-Res. Invest. Rep. 93-4014: 102 pp.Google Scholar
  46. Summons, R. E., 1993. Biogeochemical cycles, a review of fundamental aspects of organic matter formation, preservation, and composition. In Engel, M. H. & S. A. Macko (eds), Organic Geochemistry, Principles and Applications. Plenum Press, New York: 3-21.Google Scholar
  47. Strickland, J. D. H. & T. R. Parsons, 1973. A Practical Handbook of Seawater Analysis: Fisheries Research Board of Canada, Ottawa, Ontario: 310 pp.Google Scholar
  48. Trueman, D., 1999. Quality of water Colorado River Basin: U.S. Department of the Interior Progress Report No. 19, 93 pp. + appendix A.Google Scholar
  49. Tostrud, M. B., 1997. The Salton Sea, 1906-1996, computed and measured salinities and water levels: Colorado River Board of California. November 1997: 72 pp.Google Scholar
  50. Van Metre, P. C., E. Callender & C. C. Fuller, 1997. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs: Envir. Sci. Technol. 31: 2339-2344.Google Scholar
  51. White, A. F. & N. M. Dubrovsky, 1996. Chemical oxidationreduction controls on selenium mobility in groundwater systems. In Frankenburger, W. T. Jr. & Benson, Sally (eds), Selenium in the Environment. Marcel Dekker, Inc., New York, Chapter 8: 185-221.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Roy A. Schroeder
    • 1
  • William H. Orem
    • 2
  • Yousif K. Kharaka
    • 3
  1. 1.U.S. Geological SurveySan DiegoU.S.A.
  2. 2.U.S. Geological SurveyRestonU.S.A.
  3. 3.U.S. Geological SurveyMenlo ParkU.S.A

Personalised recommendations