Skip to main content
Log in

Physicochemical and microscopical study of calcific deposits from natural and bioprosthetic heart valves. Comparison and implications for mineralization mechanism

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Natural and bioprosthetic heart valves suffer from calcification, despite their differences in etiology and tissue material. The mechanism of developing calcific deposits in valve tissue is still not elucidated. The calcific deposits developed on human natural and bioprosthetic heart valves have been investigated and compared by physicochemical studies and microscopy investigations and the results were correlated with possible mechanisms of mineral crystal growth. Deposits from 16 surgically excised calcified valves (seven natural aortic and nine bioprosthetic porcine aortic valves) were examined by chemical analysis, FTIR, XRD, and SEM-EDS. The Ca/P molar ratio of the deposits from bioprosthetic valves (1.52±0.06) was significantly lower compared to that of the natural valves (1.83±0.03) (p=0.05, 1-way ANOVA). SEM-EDS examination of the two types of valve deposits revealed the coexistence of large (>20 μm) and medium (5–20 μm) plate-like crystals as well as microcrystalline (<5 μm) calcium phosphate mineral formations. The results confirmed the hypothesis that the mineral salt of calcified valves is a mixture of calcium phosphate phases such as dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP) and hydroxyapatite (HAP). DCPD and OCP are suggested to be precursor phases transformed to HAP by hydrolysis. The lower value of the Ca/P molar ratio found in the bioprostheses, in comparison with that corresponding in natural valves, was ascribed to the higher content in these deposits in precursor phases DCPD and OCP which were subsequently transformed into HAP. On the basis of chemical composition of the deposits and their morphology it is suggested that crystal growth proceeds in both types of valves by the same mechanism (hydrolysis of precursor phases to HAP) in spite of their differences in etiology, material, and possible initiation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Schoen and R. J. Levy, J. Card. Surg. 9(Suppl) (1994) 222.

    PubMed  Google Scholar 

  2. F. J. Schoen and R. J. Levy, J. Biomed. Mater. Res. 47(4) (1999) 439.

    PubMed  Google Scholar 

  3. M. P. Sands, E. A. Rittenhause, H. Mohri and K. A. Merendino, Ann. Thorac. Surg. 8(5) (1969) 407.

    PubMed  Google Scholar 

  4. D. J. Schneck, in “The Biomedical Engineering Handbook” (CRC Press, Boca Raton, Fla, 1995) p. 3.

    Google Scholar 

  5. G. H. Nancollas, in “Biomineralization” (VCH, Weinheim, 1989) p. 157.

    Google Scholar 

  6. B. B. Tomazic, W. D. Edwards and F. J. Schoen, Ann. Thorac. Surg. 60(2 Suppl) (1995) 322.

    Google Scholar 

  7. J. Kapolos, D. Mavrilas, Y. F. Missirlis and P. G. Koutsoukos, J. Biomed. Mater. Res. (Appl. Biomater.) 38 (1997) 183.

    Google Scholar 

  8. B. B. Tomazic, L. C. Chow, C. M. Carey and A. J. Shapiro, J. Pharmaceut. Sci. 86(12) (1997) 1432.

    Google Scholar 

  9. D. Mavrilas, A. Apostolaki, J. Kapolos, P. J. Koutsoukos, M. Melachrinou, V. Zolota and D. Dougenis, J. Crystal Growth 205(4) (1999) 554.

    Google Scholar 

  10. B. B. Tomazic, W. E. Brown and F. J. Schoen, J. Biomed. Mater. Res. 28 (1994) 35.

    PubMed  Google Scholar 

  11. F. J. Schoen, H. Harasaki, K. H. Kim, H. C. Anderson and R. J. Levy, J. Biomed. Mater. Res: Appl. Biomater. 22 (1988) 11.

    Google Scholar 

  12. J. P. Barone and G. H. Nancollas, J. Colloid and Interface Sci. 62 (1977) 421.

    Google Scholar 

  13. W. E. Brown, J. R. Lehr, J. P. Smith and A. W. Frazier, J. Amer. Chem. Soc. 79 (1957) 5318.

    Google Scholar 

  14. G. H. Nancollas and M. S. Mohan, Arch. Oral. Biol. 15 (1970) 731.

    PubMed  Google Scholar 

  15. J. R. Lehr, W. E. Brown and E. H. Brown, Soil Sci. Amer. Proc. 23 (1959) 3.

    Google Scholar 

  16. B. B. Tomazic, W. E. Brown and E. D. Eanes, J. Biomed. Mater. Res. 27 (1993) 217.

    PubMed  Google Scholar 

  17. N. B. Michelson, Anal. Chem. 29 (1975) 60.

    Google Scholar 

  18. J. Kapolos and P. G. Koutsoukos, Langmuir 15 (1999) 6557.

    Google Scholar 

  19. M. D. Francis and N. C. Webb, Calcif. Tissue. Res. 6 (1971) 335.

    PubMed  Google Scholar 

  20. I. Zipkin, in “Biological Calcification: Cellular and Molecular Aspects” (Appleton Century Crofts, New York, 1970) p. 69.

    Google Scholar 

  21. W. F. Neuman and M. W. Neuman, Chem. Rev. 53 (1953) 1.

    Google Scholar 

  22. W. F. Neuman, Amer. Inst. Oral. Biol. Annu. Meet. 28 (1971) 115.

    Google Scholar 

  23. B. S. Strates, W. F. Neuman and G. L. Levinskos, J. Am. Chem. Soc. 61 (1957) 279.

    Google Scholar 

  24. Z. Amjad, P. G. Koutsoukos, M. B. Tomson and G. H. Nancollas, J. Dent. Res. 57 (1978) 909.

    PubMed  Google Scholar 

  25. E. D. Eanes, I. H. Gilessen and A. S. Posner, Nature 208 (1965) 365.

    PubMed  Google Scholar 

  26. J. D. Termine, R. A. Peckauskas and A. S. Posner, Arch. Biochem. Biophys. 140 (1970) 318.

    PubMed  Google Scholar 

  27. L. Brecevic and H. Milhofer Furedi, Calcif. Tissue. Res. 10 (1972) 82.

    PubMed  Google Scholar 

  28. V. J. Ferrans, S. W. Boyce, M. E. Billingham, M. Jones, T. Ishihara and W. C. Roberts, Am. J. Cardiol. 46,5 (1980) 721.

    PubMed  Google Scholar 

  29. G. H. Nancollas, in “Phosphate Minerals” (Springer Verlag, Berlin, 1984) p. 137.

    Google Scholar 

  30. Y.-S. Lee, J. Electron Microsc. 42 (1993) 156.

    Google Scholar 

  31. F. Betts, N. C. Blumenthal and A. S. Posner, J. Crystal Growth 53 (1981) 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mavrilas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikroulis, D., Mavrilas, D., Kapolos, J. et al. Physicochemical and microscopical study of calcific deposits from natural and bioprosthetic heart valves. Comparison and implications for mineralization mechanism. Journal of Materials Science: Materials in Medicine 13, 885–889 (2002). https://doi.org/10.1023/A:1016556514203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016556514203

Keywords

Navigation