Skip to main content
Log in

Testing bone substitutes in a small animal model of revision arthroplasty

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2003

Abstract

This study evaluated a modification of the rat-pin model to enable testing of bone substitute materials. The model was characterized using the ceramic, β-tricalcium phosphate (βTCP) as a filler. A 1 mm wide, 3.6 mm deep defect was created around a stainless steel (SS) implant in the proximal tibia of a rat. This defect was filled with a ceramic powder. Large particles (90–312μm) of βTCP were mixed with Gelfoam® to form a paste which was then molded around the proximal end of either an uncoated SS pin or a pin coated with hydroxyapatite (HA). The pin with its ceramic collar was then implanted into the proximal tibia of 16 male Sprague Dawley rats. Two animals with coated implants and two with uncoated implants were sacrificed at 3, 6, 14 and 26 weeks. Longitudinal sections of each tibia were stained with toluidine blue and labeled for tartrate resistant acid phosphatase (TRAP). There was initial fibrous tissue interposition around the implants which was completely remodeled around the HA coated pins but which persisted in apposition to the SS pins. The remodeling process peaked at 3 weeks around the HA coated pins and at 6 weeks around the uncoated implants. There was little remodeling around either implant by 26 weeks. There was considerable residual βTCP present which was well tolerated as the particles were often encased in bone. The model has several characteristics of revision arthroplasty and the results demonstrate the suitability of this model for testing bone substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Summers and S. M. Eisenstein, J. Bone Joint Surg.-Br. Vol. 71-B (1989) 677.

    Google Scholar 

  2. S. Louisia, M. Stromboni, A. Meunier, L. Sedel and H. Petite, J. Bone Joint Surg. Br. Vol. 81B (1999) 719.

    Google Scholar 

  3. P. Wooley, S. Nasser and R. Fitzgerald, Clin. Orthop. 326 (1996) 63.

    PubMed  Google Scholar 

  4. O. Gauthier, J. M. Bouler, E. Aguado, R. Z. Legeros, P. Pilet and G. Daculsi, J. Mater. Sci.-Mater. Med. 10 (1999) 199.

    PubMed  Google Scholar 

  5. J. Toth, H. An, T. Lim, Y. Ran, N. Weiss, W. Lundberg, R. Xu and K. Lynch, Spine 20 (1995) 2203.

    PubMed  Google Scholar 

  6. S. Yamada, D. Heymann, J. M. Bouler and G. Daculsi, Biomaterials 18 (1997) 1037.

    PubMed  Google Scholar 

  7. T. Jensen, S. Overgaard, M. Lind, O. Rahbek, C. Bunger and K. Soballe, Bone 24 (1999) 428.

    Google Scholar 

  8. L. S. Beck, R. L. Wong, L. Deguzman, W. P. Lee, B. Ongpipattanakul and T. H. Nguyen, J. Pharmaceut. Sci. 87 (1998) 1379.

    Google Scholar 

  9. K. Ohura, M. Bohner, P. Hardouin, J. Lemaitre, G. Pasquier and B. Flautre, J. Biomed. Mater. Res. 30 (1996) 193.

    PubMed  Google Scholar 

  10. S. Oberg and J. B. Rosenquist, Int. J. Oral Maxillofac. Surg. 23 (1994) 110.

    PubMed  Google Scholar 

  11. C. Niedhart, S. Koch, U. Maus, E. Redmann, C. H. Siebert and F. U. Niethard, Bone 24 (1999) 77.

    Google Scholar 

  12. Y. Tabata, K. Yamada, S. Miyamoto, I. Nagata, H. Kikuchi, I. Aoyama, M. Tamura and Y. Ikada, Biomaterials 19 (1998) 807.

    PubMed  Google Scholar 

  13. M. B. Yaylaoglu, P. Korkusuz, U. Ors, F. Korkusuz and V. Hasirci, Biomaterials 20 (1999) 711.

    PubMed  Google Scholar 

  14. R. Brooks, J. Sharpe, J. Wimhurst, B. Myer, E. Dawes and N. Rushton, J. Bone Joint Surg. Br. Vol. 82-B (2000) 595.

    Google Scholar 

  15. M. Allen, F. Brett, P. Millett and N. Rushton, J. Bone Joint Surg.-Br. Vol. 78B (1996) 32.

    Google Scholar 

  16. G. Daculsi, Biomaterials 19 (1998) 1473.

    PubMed  Google Scholar 

  17. J. C. Lehuec, D. Clement, B. Brouillaud, N. Barthe, B. Dupuy, B. Foliguet and B. Bassecathalinat, Biomaterials 19 (1998) 733.

    PubMed  Google Scholar 

  18. F. H. Lin, C. H. Yao, J. S. Sun, H. C. Liu and C. W. Huang, Biomaterials 19 (1998) 905.

    PubMed  Google Scholar 

  19. P. Laffargue, H. F. Hildebrand, M. Rtaimate, P. Frayssinet, J. P. Amoureux and X. Marchandise, Bone 25 (1999) S55.

    Google Scholar 

  20. M. Sous, R. Bareille, F. Rouais, D. Clement, J. Amedee, B. Dupuy and C. Baquey, Biomaterials 19 (1998) 2147.

    PubMed  Google Scholar 

  21. M. Kobayashi, T. Nakamura, Y. Okada, A. Fukumoto, T. Furukawa, H. Kato, T. Kokubo and T. Kikutani, J. Biomed. Mater. Res. 42 (1998) 223.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1023/A:1022853311764

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, S.A., Brooks, R.A. & Rushton, N. Testing bone substitutes in a small animal model of revision arthroplasty. Journal of Materials Science: Materials in Medicine 13, 829–836 (2002). https://doi.org/10.1023/A:1016540110569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016540110569

Keywords

Navigation