Skip to main content
Log in

Oxygen Demand and Energy Cost of Intense Muscular Activity in Humans

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Changes in the kinetics of aerobic and anaerobic metabolism were studied in 26 highly profiled athletes performing bicycle ergometer exercise. The different intensity exercise sessions included those with a critical intensity corresponding to the maximum oxygen consumption up to value of the maximum anaerobic intensity of about 10 MMR units. The maximal aerobic metabolism was maintained in the exercises with a relative intensity of 1.0 to 2.5 MMR units. At the higher values of the exercise relative intensity, the oxygen current consumption exponentially decreased. An increase in the rate of anaerobic glycolytic energy production, which was first recorded at the threshold of anaerobic metabolism (W AT = 0.5 MMR units), increased linearly with a further increase in the exercise relative intensity up to the level of the exhaustion intensity (W ex = 4.7 MMR units). A sharp increase in the rate of an alactic anaerobic process was found at the relative intensity values of 2.5 MMR units, and this increase grew linearly up to values of the maximal anaerobic intensity (W max = 9.5 MMR units).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bainbridge, F.A., Translated under the title Fiziologiya myshechnoi deyatel'nosti (Physiology of Muscular Activity), Moscow-Leningrad: Gosizdat, 1927.

    Google Scholar 

  2. Vinogradov, M.I., Ocherki po energetike myshechnoi deyatel'nosti cheloveka (Essays on Human Muscular Activity), Leningrad: Leningrad Gos. Univ., 1941.

    Google Scholar 

  3. Volkov, N.I., Energy Metabolism and Human Work Capacity under Conditions of Intense Muscular Activity, Cand. Sci. (Biol.) Dissertation, Moscow, 1969.

  4. Volkov, N.I., Bioenergetics of Human Intense Muscular Activity and Approaches for Elevation of Work Capacity of Athletes, Doct. Sci. (Biol.) Dissertation, Moscow, 1990.

  5. Hill, A., Translated under the title Rabota myshts (Work of Muscles), Moscow-Leningrad: Gosizdat, 1927.

    Google Scholar 

  6. Conrad, A.N., Study on Metabolic States in Humans dur-ing Intense Muscular Activity, Cand. Sci. (Biol.) Dissertation, Tartu, 1978.

  7. Farfel, V.S., Fiziologiya sporta (Physiology of Sports), Moscow: Fizkul'tura i Sport, 1960.

    Google Scholar 

  8. Simonson, E., Physiology of Work Capacity and Fatigue, Springfield, II., Ch. C. Thomas, 1971.

  9. Smirnov, K.M., Energy and Gas Exchange in Muscular Activity, in Rukovodstvo po fiziologii: Fiziologiya myshechnoi deyatel'nosti, truda, i sporta (Guidebook on Physiology: Physiology of Muscular Activity, Work, and Sports), Leningrad: Nauka, 1969, p. 186.

    Google Scholar 

  10. Kaijser, L., Limiting Factors for Aerobic Muscle Performance, Acta Physiol. Scand., 1970, Suppl. 346.

  11. Kayser, Ch., Physiologie du travail et du sport, Paris: Human et C. Le, 1947.

    Google Scholar 

  12. Karpovich, P.V., Physiology of Muscular Activity, Philadelphia; Saunders, 1953.

    Google Scholar 

  13. Whipp, B.J. and Wasserman, K., Oxygen Uptake Kinet-ics for Various Intensities of Constant-Load Work, J. Appl. Physiol., 1978, vol. 33, no. 3, p. 351.

    Google Scholar 

  14. Volkov, N.I. and Cheremisinov, V.N., Oxygen Debt in Exercises of Different Power and Duration, Teor. Prakt. Fizich. Kul't., 1970, no. 10, p. 17.

    Google Scholar 

  15. Gollnik, F.D. and Hermansen, L., Biochemical Adapta-tion to Exercises: Anaerobic Metabolism, in Nauka i Sport, (Science and Sports), Zatsiorskii, V.M. and Tumanyan, G.S., Eds., Moscow: Progress, 1982, p. 14.

    Google Scholar 

  16. Yakovlev, N.N., Biokhimiya sporta (Biochemistry of Sports), Moscow: Fizkul'tura i Sport, 1974.

    Google Scholar 

  17. Agnevik, L., Karlsson J., Diamant, A., and Saltin, B., Oxygen Debt, Lactate in Blood and Muscle Tissue dur-ing Maximal Exercise in Man, Biochemistry of Exercise. Medicine and Sport, vol.3, Basel: Karger, 1969, p. 62.

    Google Scholar 

  18. Berg, A., Jakob, E., and Keul, J., Physiological Energet-ics in Sports, in Energy Transportation in Cells and Organisms, Weiser, W. and Anaiger, E., Eds., Stuttgart: A. Thieml, 1989, p. 241.

    Google Scholar 

  19. Dill, D.B. and Sacktor, B., Exercise and the Oxygen Debt, J. Sports Med. and Phys. Fitn., 1962, vol. 2, no. 2, p. 66.

    Google Scholar 

  20. Di Prampero, P.E., Grundlagen der anaeroben Energie-bereitstellung und der O 2 Shuld bei korperlichen Hoch-stbelastungen, Medizin und Sport, 1973, XIII Ja, no. 1, p. 1.

    Google Scholar 

  21. Hermansen L. and Medbo, J.I., The Relative Signifi-cance of Aerobic and Anaerobic Processes during Maxi-mal Exercise of Sport Duration, in Physiological Chem-istry of Training and Detraining, Marconnet, P., Poorts-mans, J., and Hermansen, L., Eds., Basel: Karger, 1984. p. 168.

    Google Scholar 

  22. Hill, A.V., The Physiological Basis of Athletic Records, Lancet, 1925, vol. 2, p. 481.

    Google Scholar 

  23. Keul, J., Doll, E., and Keppler, D., Energy Metabolism of Human Muscle, Baltimore: University Book, 1972.

    Google Scholar 

  24. Margaria, R., Aghemo, P., and Sassi, G., Lactic Acid Production in Supramaximal Exercise, Pfluger's Bd., 1971, vol. 326, p. 152.

    Google Scholar 

  25. Roberts, A.D. and Morton, A.R., Total and Alactic Oxy-gen Debts after Supramaximal Work, Eur. J. Appl. Physiol., 1978, vol. 38, p. 281.

    Google Scholar 

  26. Saltin, B., Anaerobic Capacity. Past, Present, Prospective, in Biochemistry of Exercise, 7, Taylor, A.W., Gollmick, P.D., and Green, H.J., Eds., Champaign, II.: Human Kinetics, 1990, p. 387.

    Google Scholar 

  27. Skinner, J.S. and Morgan D.W., Aspects of Anaerobic Per-formance, in Limits of Human Performance, Clarke, D.H., Eckert, H.M., eds., The Academy Papers, no. 18, Champaign, II.: Human Kinetics, 1985, p. 31.

    Google Scholar 

  28. Spriet, L.L., Anaerobic Metabolism during High-Inten-sity Exercise, in Exercise Metabolism, Hargreaves, M., ed., Champaign, II.: Human Kinetics, 1995, p. 1

    Google Scholar 

  29. Yastin, P.B., Quantification of Anaerobic Capacity, Scand. J. Med. Sci. Sports, 1994, vol. 4, p. 91.

    Google Scholar 

  30. Gabrys', T., Anaerobic Work Capacity of Athletes: Lim-iting Factors, Tests and Criteria, Tools and Methods of Training, Doct. Sci. (Ped.) Dissertation, Moscow, 2000.

  31. Volkov, N.I., Cheremisinov, V.N., and Razumovskii, E.A., Kinetics of Oxygen Exchange in Human Muscular Activity, in Kislorodnyi rezhim organizma i ego regu-lirovanie (Oxygen Regimen of the Body and Its Regulation), Kiev: Naukova Dumka, 1966.

    Google Scholar 

  32. Volkov, N.I. and Yaruzhnyi, N.V., Kinetics of Anaerobic Energy Production in Short-Term Maximal Power Exercises, in Faktory limitiruyushchie povyshenie rabot-osposobnosti u sportsmenov vysokoi kvalifikatsii (Factors Limiting an Increase in Work Capacity in Highly-Profiled Athletes), Moscow: GTSOLIFK, 1984, p. 52.

    Google Scholar 

  33. Aruna, R.A., Jones, J.W., and Strait, G.B., Anaerobic Metabolic Responses to Acute Maximal Exercise in Male Athletes, Am. Health J., 1964, vol. 67, p. 643.

    Google Scholar 

  34. Di Prampero, P.E. and Margaria, R., Relationship between O 2 Consumption, High Energy Phosphate and the Kinetics of the O2 Debt in Exercise, Arch. Ges. Physiol., 1968, vol. 304, p. 11.

    Google Scholar 

  35. Margaria, R., Ceretelli, P., and Mangili, F., Balance and Kinetics of Anaerobic Energy Release during Strenuous Exercise in Man, J. Appl. Physiol., 1964, vol. 19, p. 623.

    Google Scholar 

  36. Volkov, N.I., On Interrelations of Respiration and Glyc-olysis during Various Muscular Work, in Trudy V Mezh-dunarodnogo biokhimicheskogo kongressa. Referaty sektsionnykh ssobshchenii (Proceedings of V Interna-tional Biochemical Congress. Abstracts of Section Reports), vol. II, Sections 14-28, Moscow: Akademiya Nauk SSSR, 1961, p. 155.

    Google Scholar 

  37. Volkov, N.I., Oxygen Consumption and Blood Content of Lactic Acid during Intense Muscular Work, Sechenov Physiol. Zh. SSSR, 1962, vol. 48, no. 3, p. 314.

    Google Scholar 

  38. Volkov, N.I., The Energy Continium and Metabolic States of Athletes in Muscular Activity, Biokhimiya sporta. Materialy mezhdunarodnogo simposiuma (Bio-chemistry of Sports. Materials of International Symposium), Leningrad: Leningrad Institute of Fisical Culture, 1990, p. 159.

    Google Scholar 

  39. Bangsbo, J., Gollnick, P.D., Graham T.E., et al., Anaerobic Energy Production and O2 Deficit-Debt Relation-ship during Exhaustive Exercise in Humans, J. Physiol., 1990, vol. 422, p. 539.

    Google Scholar 

  40. Newsholme, E.A., Basic Aspects of Metabolic Regula-tion and Their Application to Provision of Energy in Exercise, in Principles of Exercise Biochemistry, 2nd ed., Poortmans, J.R., ed., Basel: Karger, 1993, p. 51.

    Google Scholar 

  41. Piiper, J., Di Prampero, P.E., and Ceretelli, P., Relationship between Oxygen Consumption and Anaerobic Metabolism in Stimulated Gastrocnemius Muscle of the Dog, in Exercise Bioenergetics and Gas Exchange, Ceretelli, P. and Whipp, B.J., Eds., Amsterdam: Elsevier /North-Holland Biomedical, 1980, p. 35.

    Google Scholar 

  42. Wasserman, K., Van Kassel, A.L., and Burton, G.G., Interaction of Physiological Mechanisms during Exercise, J. Appl. Physiol., 1967, vol. 22, p. 71.

    Google Scholar 

  43. Viru, A.A., Energy Provision of Muscular Work at the Concurrent Use of Aerobic and Anaerobic Mechanisms of Energy Provision, in Glavy is sportivnoi fiziologii.(Chapters in Sport Physiology), Tartu: Tartu Gos. Univ., 1988, p. 51.

    Google Scholar 

  44. Hill, A.V., Muscular Movement in Man: The Factors Governing Speed and Recovery from Fatigue, New York: Mc Graw-Hill Book Co., 1927.

    Google Scholar 

  45. Margaria, R., Aghemo, P., and Rovelli, E., Measurement of Muscular Power (Anaerobic) in Man, J. Appl. Physiol., 1966, vol. 21, p. 1662.

    Google Scholar 

  46. Volkov, N.I., Shirkovets, E.A., and Borilkevich, V.E., Assessment of Aerobic and Anaerobic Capacity of Ath-lets in Treadmill Running Tests, Eur. J. Appl. Physiol., 1975, vol. 34, p. 121.

    Google Scholar 

  47. Remizov, L.M. and Belov, V.A., Quantitative Analysis of Bioenergetical Function Kinetics during the Intense Muscular Work and Recovery, in Bioenergeticheskie kri-terii sportivnoi pabotosposobnosti (Bioenergetical Tests for Sportive Capacity), Volkov, N.I., Ed., Moscow: GTSOLIFK, 1978, p. 4.

    Google Scholar 

  48. Altukhov, N.D., Volkov, N.I., Konrad, A.N., and Savel'ev, I.A., Oxygen Consumption and Releasing of Excess NI2 during the Initial Period of Intense Muscular Activity, Fiziol. Chel., 1983, vol. 9, no. 2, p. 307.

    Google Scholar 

  49. Barker S.B. and Summerson, W.N., The Colorimetric Determination of Lactic Acid in Biological Material, J. Biol. Chem., 1941, vol. 138, p. 535.

    Google Scholar 

  50. Methods of Enzymatic Analysis, Bergmeyer, M.U., Ed., New York: Academic, 1974.

    Google Scholar 

  51. Volkov, N.I., Testy kriterii dlya otsenki vynoslivosti sportsmenov (Test Parameters for Assessment of Ath-letes' Endurance), Moscow: GTSOLIFK, 1989.

    Google Scholar 

  52. Andersen, K.L., Shepard, R.J., and Denolin, H., Eds., Fundamentals of Exercise Testing, Geneva: WHO, 1971.

    Google Scholar 

  53. American College of Sports Medicine: Guidelines for Exercise Testing and Prescription, 4th Ed., Philadelphia: Lea and Febiger, 1991.

  54. Throden, J.S., Wilson, B.A., and Mac Dougall, J.D. Testing Aerobic Power, in Physiological Testing of the Elite Athlete, MacDougall, J.D., Wenger, H.A., and Green, H.I., Eds., Ithaca, New York: Movement, 1982, p. 39.

    Google Scholar 

  55. Shepard, R J., Standart Tests of Aerobic Power, in Frontiers of Fitness, Shepard, R.J., Ed., Springfield: Ch. Thomas, 1971, p. 233.

    Google Scholar 

  56. Dill, D.B., Historical Review of Exercise Physiology Science, in Science and Medicine of Exercise and Sports, Johnson, W.R., Buskirk, E.R., Eds., New York: Harper and Row, 1974, p. 37.

    Google Scholar 

  57. Margaria, R., Biochemistry of Muscular Contraction and Recovery, J. Sports Med., 1963, vol. 3, p. 145.

    Google Scholar 

  58. Margaria, R., Biomechanics and Bioenergetics of Mus-cular Exercise, Oxford: Clarendon, 1976.

    Google Scholar 

  59. Volkov, N.I. and Zatsiorskii, V.M., Kinetics of Lactate in Human Blood during an Intense Muscular Work, Acta Biol. Med. German., 1964, vol. 13, no. 5, p. 659.

    Google Scholar 

  60. Margaria, R., Edwards, H.J., and Dill, D.B., The Possible Mechanisms of Contracting and Paying off Oxygen Debt and the Role of Lactic Acid in Muscular Contraction, Am. J. Physiol., 1933, vol. 106, p. 689.

    Google Scholar 

  61. Simonson, E. and Enzer, N., Physiology of Muscular Exercise and Fatigue in Disease, Medicine, 1942, vol. 21, p. 345.

    Google Scholar 

  62. Bar-On, O., Dotan, R., and Inbar, O., A 30-s All-Out Ergometer Test: Its Reliability and Validity for Anaerobic Capacity, Israel J. Med. Sci., 1977, vol. 13, p. 326.

    Google Scholar 

  63. Inbar, I., Aar-On, I., and Scinner, J.S., The Wingate Anaerobic Test, Champain, I.: Human Kinetics, 1996.

  64. Pediatric Anaerobic Performance, Van Praagh, E., ed., Champain, II.: Human Kinetics, 1998.

  65. Vandervalle, H., Peres, G., and Monod, H., Standart Anaerobic Exercise Tests, Sports Med., 1987, vol. 4, p. 268.

    Google Scholar 

  66. Hermansen, L., Ergometry, Oslo: Universitatsporlaget, 1971.

    Google Scholar 

  67. Saltin, B. Metabolic Fundamentals in Sport, in Sport in the Modern World—Chances and Problems. Papers, Results, Materials. Scientific Congress, Munich, Aug. 21 to 25, 1972, Grupl, O., Kurz, D., Teipel, J.M., eds., Berlin: Springer, 1973, p. 465.

    Google Scholar 

  68. Costill, D.L., Inside Running: Basic of Sports Physiology, Canmet, Indiana: Benchmark, 1986.

    Google Scholar 

  69. Costill, D., Hoffinan, W., and Kehoe, F., Maximum Anaerobic Power among College Football Players, J. Sports Phys. Fitness, 1968, no. 8, p. 103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, N.I., Savel'ev, I.A. Oxygen Demand and Energy Cost of Intense Muscular Activity in Humans. Human Physiology 28, 454–465 (2002). https://doi.org/10.1023/A:1016538100568

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016538100568

Keywords

Navigation