Skip to main content
Log in

An Improved Process for Selective Liquid-Phase Air Oxidation of Toluene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An improved process for the oxidation of toluene to obtain benzaldehyde and benzyl alcohol with high selectivities using a Co/Mn/Br composite catalytic system in liquid phase is described. A protocol for recovery and reuse of the composite catalyst is developed. The use of low concentrations of composite catalytic systems aimed at minimizing corrosion of the reaction, and higher concentrations of toluene affording higher productivity and recyclability of the catalyst giving high turnover number, are the remarkable achievements of the present methodology. Investigation into the recycle, aging and spectroscopic studies of the catalytic system improves the understanding of the process, chemistry and mechanism of the reaction. As the market demand for each product fluctuates, the dynamic system developed here to meet changing demands is very important to obtain one of the products in excess quantities with a change of the ratio of Br/Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Sheldon and J.K. Kochi, in: Metal-Catalyzed Oxidations of Organic Compounds (Academic Press, New York, 1981).

    Google Scholar 

  2. P.J.A.C. Camerman and J.D.V. Hanotier, UK Patent 1,275,699 (1972).

  3. T.F. Blackburn and J. Schwartz, J. Chem. Soc., Chem. Commun. (1972) 157.

  4. A.S. Hay and H.S. Blanchard, Can. J. Chem. 43 (1965) 1306.

    Google Scholar 

  5. Y. Kamaya, J. Catal. 33 (1974) 480.

    Google Scholar 

  6. C. Guoying and X. Xi Zuwei, Chinese J. Catal. 3 (1983) 218.

    Google Scholar 

  7. T. Morimoto and Y. Ogata, J. Chem. Soc. B (1967) 1353.

  8. S.A. Chavan, S.B. Halligudi, D. Srinivas and P. Ratnasamy, J. Mol. Catal. 161 (2000) 49; S.A. Chavan, D. Srinivas and P. Ratnasamy, Chem. Commun. (2001) 1124.

    Google Scholar 

  9. E.I. Heiba, R.M. Dessau and W.J. Koehl, J. Am. Chem. Soc. 91 (1969) 6831.

    Google Scholar 

  10. C.L. Jenkins and J.K. Kochi, J. Am. Chem. Soc. 94 (1972) 856.

    Google Scholar 

  11. T. Okada and Y. Kamiya, Bull. Chem. Soc. Jpn. 54 (1981) 2724.

    Google Scholar 

  12. V.A. Adamyan, Y.V. Geletii and M. Hronec, Kinet. Catal. 34 (1993) 573.

    Google Scholar 

  13. K. Bahranowski, R. Dula, M. Labanowska, A. Michalik, L.A. Vartikian and E.M. Serwicka, Appl. Clay Sci. 18 (2001) 93.

    Google Scholar 

  14. M.W. de Lange, J.G. van Ommen and L. Lefferts, Appl. Catal. A: General 220 (2001) 41.

    Google Scholar 

  15. H.V. Borgaonkar, S.R. Raverkar and S.B. Chandalla, Ind. Eng. Chem. Prod. Res. Dev. 23 (1984) 455.

    Google Scholar 

  16. W. Partenheimer, Catal. Today 23 (1995) 69.

    Google Scholar 

  17. W. Partenheimer, J. Mol. Catal. 67 (1991) 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantam, M.L., Sreekanth, P., Rao, K.K. et al. An Improved Process for Selective Liquid-Phase Air Oxidation of Toluene. Catalysis Letters 81, 223–232 (2002). https://doi.org/10.1023/A:1016537325179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016537325179

Navigation