Skip to main content
Log in

Potassium-Promoted Carbon-Based Iron Catalyst for Ammonia Synthesis. Effect of Fe Dispersion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Potassium-promoted iron catalysts supported on thermally modified, partly graphitized carbon were studied in the ammonia synthesis reaction. Iron nitrate was used as a precursor of the active phase and KOH or KNO3 were used as promoters. The kinetic studies of NH3 synthesis were carried out in a differential reactor under 63 bar and 90 bar pressure. Hydrogen chemisorption, X-ray diffraction and transmission electron microscopy experiments were performed to determine the dispersion of iron in the specimens. All the K+–Fe/C catalysts proved to be sensitive to ammonia, the NH3 partial pressure dependencies of their reaction rates being close to that of the commercial magnetite catalyst (KM I, H. Topsoe). The catalytic properties of the promoted Fe particles on carbon were shown to be dependent upon the iron dispersion, i.e. smaller particles exhibited higher turnover frequency in NH3 synthesis. It is suggested that either small Fe crystallites expose more highly active sites, e.g. C-7 (B-5) or the promotion of small crystallites by the alkali is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Strait, Nitrogen Methanol 238 (1999) 37.

    Google Scholar 

  2. R.B. Strait and S.A. Knez, in: Int. Conf. Exhibition, Caracas, 28 February–2 March 1999.

  3. US Patent 4,163,775 (1979), British Petroleum.

  4. S.R. Tennison, in: Catalytic Ammonia Synthesis: Fundamentals and Practice, ed. J.R. Jennings (Plenum Press, New York, 1991), p. 303.

    Google Scholar 

  5. S.M. Yunusov, E.S. Kalyuzhnaya, B.L. Moroz, S.N. Agafonova, V.A. Likholobov and V.B. Shur, J. Mol. Cat. A 165 (2001) 141.

    Google Scholar 

  6. S.M. Yunusov, E.S. Kalyuzhnaya, H. Mahapatra, V.K. Puri, V.A. Likholobov and V.B. Shur, J. Mol. Cat. A 139 (1999) 219.

    Google Scholar 

  7. S.M. Yunusov, E.S. Kalyuzhnaya, B.L. Moroz, S.N. Agafonova, V.A. Likholobov and V.B. Shur, Appl. Catal. A 218 (2001) 251.

    Google Scholar 

  8. Z. Kowalczyk, J. Sentek, S. Jodzis, R. Diduszko, A. Presz, A. Terzyk, Z. Kucharski and J. Suwalski, Carbon 34 (1996) 404.

    Google Scholar 

  9. W. Raróg, I. Lenarcik, Z. Kowalczyk, J. Sentek, M. Krukowski and J. Zieliński, Polish J. Chem. 74 (2000) 1473.

    Google Scholar 

  10. J. Zieliński, J. Catal. 76 (1982) 157.

    Google Scholar 

  11. Z. Kowalczyk, S. Jodzis, W. Raróg, J. Zieliński and J. Pielaszek, Appl. Catal. A 173 (1998) 153.

    Google Scholar 

  12. A. Borodziński and M. Bonarowska, Langmuir 13(21) (1997) 5613.

    Google Scholar 

  13. Z. Kowalczyk, J. Sentek, S. Jodzis, E. Mizera, J. Góralski, T. Paryjczak and R. Diduszko, Catal. Lett. 45 (1997) 65.

    Google Scholar 

  14. Z. Kowalczyk, Catal. Lett. 37 (1996) 173.

    Google Scholar 

  15. W. Raróg, Z. Kowalczyk, J. Sentek, D. Skladanowski, D. Szmigiel and J. Zieliński, Appl. Catal. A 208 (2001) 213.

    Google Scholar 

  16. J. Schitze, W. Mahdi, B. Herzog and R. Schloegl, Topics Catal. 1 (1994) 195.

    Google Scholar 

  17. M. Boudart, A. Delbouille, J.A. Dumesic, S. Khammoumma and H. Topsoe, J. Catal. 37 (1975) 486.

    Google Scholar 

  18. J.A. Dumesic, H. Topsoe, S. Khammoumma and M. Boudart, J. Catal. 37 (1975) 503.

    Google Scholar 

  19. J.A. Dumesic, H. Topsoe and M. Boudart, J. Catal. 37 (1975) 513.

    Google Scholar 

  20. C.J.H. Jacobsen, P.L. Hansen, E. Torngvist, L. Jansen, D.V. Prip and J. Chorkendorff, J. Mol. Cat. A 163 (2000) 19.

    Google Scholar 

  21. K. Aika, H. Hori, A. Ozaki, J. Catal. 27 (1972) 424.

    Google Scholar 

  22. K. Aika, A. Ohya, A. Ozaki, Y. Inoue and I. Yasumori, J. Catal. 92 (1985) 305.

    Google Scholar 

  23. K. Aika, T. Takano and S. Murata, J. Catal. 136 (1992) 126.

    Google Scholar 

  24. F. Rosowski, A. Hornung, O. Hinrichsen, D. Herein, M. Muhler and G. Ertl, Appl. Catal. A 151 (1997) 443.

    Google Scholar 

  25. K. Aika, T. Kawahara, S. Murata and T. Onishi, Bull. Chem. Soc. Jpn. 63 (1990) 1221.

    Google Scholar 

  26. T. Hikita, K. Aika and T. Onishi, Catal. Lett. 4 (1990) 157.

    Google Scholar 

  27. G. Ertl, S.B. Lee and M. Weiss, Surf. Sci. 114 (1982) 527.

    Google Scholar 

  28. G. Ertl, in: Catalytic Ammonia Synthesis: Fundamentals and Practice, ed. J.R. Jennings (Plenum Press, New York, 1991).

    Google Scholar 

  29. J.J. Mortensen, B. Hammer and J.K. Norskov, Phys. Rev. Lett. 80 (1998) 4333.

    Google Scholar 

  30. J.K. Norskov, S. Holloway and N.D. Lang, Surf. Sci. 114 (1984) 65.

    Google Scholar 

  31. D.R. Strongin and G.A. Somorjai, J. Catal. 109 (1988) 51.

    Google Scholar 

  32. D.R. Strongin and G.A. Somorjai, in: Catalytic Ammonia Synthesis: Fundamentals and Practice, ed. J.R. Jennings (Plenum Press, New York, 1991).

    Google Scholar 

  33. P. Stolze and J.K. Norskov, Topics Catal. 1 (1994) 253.

    Google Scholar 

  34. B. Fastrup, Topics Catal. 1 (1994) 273.

    Google Scholar 

  35. S. Dahl, A. Logadottir, C.J.H. Jacobsen and J.K. Norskov, Appl. Catal. A 222 (2001) 19.

    Google Scholar 

  36. J.G. van Ommen, W.J. Bolnik, J. Prasad and P. Mars, J. Catal. 38 (1975) 120.

    Google Scholar 

  37. H. Bludau, H. Over, T. Hertel, M. Gierer and G. Ertl, Surf. Sci. 342 (1995) 134.

    Google Scholar 

  38. D. Szmigiel, H. Bielawa, M. Kurtz, O. Hinrichsen, M. Muhler, W. Raróg, S. Jodzis, Z. Kowalczyk, L. Znak and J. Zieliński, J. Catal. 205 (2002) 205.

    Google Scholar 

  39. D.R. Strongin, J. Carazza, S.R. Bare and G.A. Somorjai, J. Catal. 103 (1987) 213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jedynak, A., Szmigiel, D., Raróg, W. et al. Potassium-Promoted Carbon-Based Iron Catalyst for Ammonia Synthesis. Effect of Fe Dispersion. Catalysis Letters 81, 213–218 (2002). https://doi.org/10.1023/A:1016533224270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016533224270

Navigation