Experimental Repeal of the Speed Limit for Gravitational, Electrodynamic, and Quantum Field Interactions

Abstract

General relativity has a geometric and a field interpretation. If angular momentum conservation is invoked in the geometric interpretation to explain experiments, the causality principle is violated. The field interpretation avoids this problem by allowing faster-than-light propagation of gravity in forward time. All existing experiments are in agreement with that interpretation. This implies the existence of real superluminal propagation and communication of particles and fields, free of causality problems. The introduction of real physical faster-than-light propagation into gravitation, electrodynamics and quantum theory has important consequences for physics.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    A. Aspect, Phys. Lett. A 54 (1974).

  2. 2.

    T. Van Flandern, Phys. Lett. A 250, 1-11 (1998); Meta Research Bulletin 9, 1-9 (2000).

    Google Scholar 

  3. 3.

    Ph. Droz-Vincent, N. Cufaro-Petroni, and J. P. Vigier, Nuov. Cim. Lett. 31, 415 (1981). The introduction of superluminal quantum interactions between time-like particle paths in quantum mechanics is discussed in a recent book: J. P. Vigier and the Stochastic Interpretation of Quantum Mechanics (Apeiron, Montreal, 2000).

    Google Scholar 

  4. 4.

    H. Puthoff, “Polarizable-vacuum (PV) approach to general relativity,” Found. Phys. 32(6) (2002).

  5. 5.

    A. Ghosh, Progress in New Cosmologies (Plenum Press, New York, 1993).

    Google Scholar 

  6. 6.

    N. Graneau, D. Roscoe, and T. Phipps, Jr., Eur. Phys. J. D in press, 2000.

  7. 7.

    W. Walker and J. Dual, “Phase speed of longitudinally oscillating gravitational fields,” in Edoardo Amaldi Conference on Gravitational Waves (World Scientific, 1997); web archive version at 〈http://xxx.lanl.gov/abs/gr-qc/9706082〉; full exposition in W. Walker, Gravitational Interaction Studies, ETH Dissertation #12289, Zürich, Switzerland (1997); update in W. D. Walker, “Experimental evidence of near-field superluminal propagating electromagnetic fields,” 〈http://xxx.lanl.gov/abs/physics/0009023〉.

  8. 8.

    T. Van Flandern, MetaRes. Bull. 9, 1-9 (2000); see 〈http://metaresearch.orgP.

    Google Scholar 

  9. 9.

    R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984), p. 67.

    Google Scholar 

  10. 10.

    R. P. Feynman, Feynman Lectures on Gravitation (Addison-Wesley, New York, 1995), p. 113.

    Google Scholar 

  11. 11.

    W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), pp. 177, 997, 1080, and 1095.

    Google Scholar 

  12. 12.

    H. A. Lorentz, Lectures on Theoretical Physics, Vol. III, “The principle of relativity for uniform translations,” (Macmillan, London, 1931), pp. 208-211.

    Google Scholar 

  13. 13.

    Am. J. Phys. 41, 1068-1077 (1973).

  14. 14.

    Phys. Lett. A 175, 269-272 (1993).

  15. 15.

    G. E. Marsch and C. Nissim-Sabat, Phys. Lett. A 262, 103-106 (1999).

    Google Scholar 

  16. 16.

    M. Ibison, H. E. Puthoff, and S. R. Little, 〈http://xxx.lanl.gov/abs/physics/9910050P.

  17. 17.

    T. Van Flandern, Phys. Lett. A 262, 261-263 (1999).

    Google Scholar 

  18. 18.

    S. Carlip, Phys. Lett. A 267, 81-87 (2000).

    Google Scholar 

  19. 19.

    A. Eddington, Space, Time &;;; Gravitation (1920); reprinted by Cambridge University Press, 1987, p. 109.

  20. 20.

    F. de Felice, Gen. Rel. Grav. 2, 347-357 (1971).

    Google Scholar 

  21. 21.

    R. Mansouri and R. U. Sexl, Gen. Rel. Grav. 8, 497 (1977).

    Google Scholar 

  22. 22.

    T. Van Flandern, Open Questions in Relativistic Physics, F. Selleri, ed. (Apeiron, Montreal, 1998), pp. 81-90.

    Google Scholar 

  23. 23.

    A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 39, 65-100 (1938).

    Google Scholar 

  24. 24.

    H. P. Robertson and T. W. Noonan, Relativity and Cosmology (Saunders, Philadelphia, 1938).

    Google Scholar 

  25. 25.

    J. M. A. Danby, Fundamentals of Celestial Mechanics (Willmann-Bell, Richmond, 1988), p. 125.

    Google Scholar 

  26. 26.

    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II (Addison-Wesley, Reading, 1963), p. 21.

    Google Scholar 

  27. 27.

    W. Walker, 〈http://xxx.lanl.gov/abs/physics/0001063〉, pp. 5-6 (electrical) &;;; pp. 14-15 (gravitational).

  28. 28.

    T. Van Flandern (2002), in Pushing Gravity: New Perspectives on Le Sage's Theory of Gravitation, M. Edwards, ed. (Apeiron, Montreal, 2002), pp. 93-122.

    Google Scholar 

  29. 29.

    D. McCarthy, Odjmenck@aol.comP, USENET discussions in sci.physics.relativity, April 2000.

  30. 30.

    W. Kinney, A. Melchiorri, and A. Riotto, Phys. Rev. D 63, 023505 (2000).

    Google Scholar 

  31. 31.

    E. A. Lange et al., Phys. Rev. D 63, 042001 (2001).

    Google Scholar 

  32. 32.

    P. Laplace, Mécanique Céleste (1799-1825 edition reprinted in English translation by Chelsea Publishing, New York, 1966), pp. 45-50.

    Google Scholar 

  33. 33.

    T. Van Flandern, Dark Matter, Missing Planets and New Comets (North Atlantic Books, Berkeley, 1993; 2nd edn., 1999), pp. 45-50.

    Google Scholar 

  34. 34.

    D. M. Greenberger and A. W. Overhauser, Scientific American 242, 66 (May 1980).

    Google Scholar 

  35. 35.

    C. W. Sherwin and R. D. Rawcliffe, Report I-92 of March 14, 1960 of the Consolidated Science Laboratory (University of Illinois, Urbana); obtainable from U.S. Department of Commerce's Clearinghouse for Scientific and Technical Information, document AD 625706.

  36. 36.

    T. E. Phipps, Jr., Heretical Verities (Classic Non-fiction Library, Urbana, 1986), pp. 273-282.

    Google Scholar 

  37. 37.

    M. A. Rowe et al., “Experimental violation of a Bell's inequality with efficient detection,” Nature 409, 791-794 (2001).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Flandern, T., Vigier, J. Experimental Repeal of the Speed Limit for Gravitational, Electrodynamic, and Quantum Field Interactions. Foundations of Physics 32, 1031–1068 (2002). https://doi.org/10.1023/A:1016530625645

Download citation

  • gravitation
  • speed
  • relativity
  • aberration
  • causality
  • experiments
  • faster-than-light
  • superluminal