Foundations of Physics

, Volume 32, Issue 7, pp 1031–1068 | Cite as

Experimental Repeal of the Speed Limit for Gravitational, Electrodynamic, and Quantum Field Interactions

  • Tom Van Flandern
  • Jean-Pierre Vigier


General relativity has a geometric and a field interpretation. If angular momentum conservation is invoked in the geometric interpretation to explain experiments, the causality principle is violated. The field interpretation avoids this problem by allowing faster-than-light propagation of gravity in forward time. All existing experiments are in agreement with that interpretation. This implies the existence of real superluminal propagation and communication of particles and fields, free of causality problems. The introduction of real physical faster-than-light propagation into gravitation, electrodynamics and quantum theory has important consequences for physics.

gravitation speed relativity aberration causality experiments faster-than-light superluminal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aspect, Phys. Lett. A 54 (1974).Google Scholar
  2. 2.
    T. Van Flandern, Phys. Lett. A 250, 1-11 (1998); Meta Research Bulletin 9, 1-9 (2000).Google Scholar
  3. 3.
    Ph. Droz-Vincent, N. Cufaro-Petroni, and J. P. Vigier, Nuov. Cim. Lett. 31, 415 (1981). The introduction of superluminal quantum interactions between time-like particle paths in quantum mechanics is discussed in a recent book: J. P. Vigier and the Stochastic Interpretation of Quantum Mechanics (Apeiron, Montreal, 2000).Google Scholar
  4. 4.
    H. Puthoff, “Polarizable-vacuum (PV) approach to general relativity,” Found. Phys. 32(6) (2002).Google Scholar
  5. 5.
    A. Ghosh, Progress in New Cosmologies (Plenum Press, New York, 1993).Google Scholar
  6. 6.
    N. Graneau, D. Roscoe, and T. Phipps, Jr., Eur. Phys. J. D in press, 2000.Google Scholar
  7. 7.
    W. Walker and J. Dual, “Phase speed of longitudinally oscillating gravitational fields,” in Edoardo Amaldi Conference on Gravitational Waves (World Scientific, 1997); web archive version at 〈〉; full exposition in W. Walker, Gravitational Interaction Studies, ETH Dissertation #12289, Zürich, Switzerland (1997); update in W. D. Walker, “Experimental evidence of near-field superluminal propagating electromagnetic fields,” 〈〉.Google Scholar
  8. 8.
    T. Van Flandern, MetaRes. Bull. 9, 1-9 (2000); see 〈http://metaresearch.orgP.Google Scholar
  9. 9.
    R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984), p. 67.Google Scholar
  10. 10.
    R. P. Feynman, Feynman Lectures on Gravitation (Addison-Wesley, New York, 1995), p. 113.Google Scholar
  11. 11.
    W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), pp. 177, 997, 1080, and 1095.Google Scholar
  12. 12.
    H. A. Lorentz, Lectures on Theoretical Physics, Vol. III, “The principle of relativity for uniform translations,” (Macmillan, London, 1931), pp. 208-211.Google Scholar
  13. 13.
    Am. J. Phys. 41, 1068-1077 (1973).Google Scholar
  14. 14.
    Phys. Lett. A 175, 269-272 (1993).Google Scholar
  15. 15.
    G. E. Marsch and C. Nissim-Sabat, Phys. Lett. A 262, 103-106 (1999).Google Scholar
  16. 16.
    M. Ibison, H. E. Puthoff, and S. R. Little, 〈 Scholar
  17. 17.
    T. Van Flandern, Phys. Lett. A 262, 261-263 (1999).Google Scholar
  18. 18.
    S. Carlip, Phys. Lett. A 267, 81-87 (2000).Google Scholar
  19. 19.
    A. Eddington, Space, Time &;;; Gravitation (1920); reprinted by Cambridge University Press, 1987, p. 109.Google Scholar
  20. 20.
    F. de Felice, Gen. Rel. Grav. 2, 347-357 (1971).Google Scholar
  21. 21.
    R. Mansouri and R. U. Sexl, Gen. Rel. Grav. 8, 497 (1977).Google Scholar
  22. 22.
    T. Van Flandern, Open Questions in Relativistic Physics, F. Selleri, ed. (Apeiron, Montreal, 1998), pp. 81-90.Google Scholar
  23. 23.
    A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math. 39, 65-100 (1938).Google Scholar
  24. 24.
    H. P. Robertson and T. W. Noonan, Relativity and Cosmology (Saunders, Philadelphia, 1938).Google Scholar
  25. 25.
    J. M. A. Danby, Fundamentals of Celestial Mechanics (Willmann-Bell, Richmond, 1988), p. 125.Google Scholar
  26. 26.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II (Addison-Wesley, Reading, 1963), p. 21.Google Scholar
  27. 27.
    W. Walker, 〈〉, pp. 5-6 (electrical) &;;; pp. 14-15 (gravitational).Google Scholar
  28. 28.
    T. Van Flandern (2002), in Pushing Gravity: New Perspectives on Le Sage's Theory of Gravitation, M. Edwards, ed. (Apeiron, Montreal, 2002), pp. 93-122.Google Scholar
  29. 29.
    D. McCarthy, Odjmenck@aol.comP, USENET discussions in sci.physics.relativity, April 2000.Google Scholar
  30. 30.
    W. Kinney, A. Melchiorri, and A. Riotto, Phys. Rev. D 63, 023505 (2000).Google Scholar
  31. 31.
    E. A. Lange et al., Phys. Rev. D 63, 042001 (2001).Google Scholar
  32. 32.
    P. Laplace, Mécanique Céleste (1799-1825 edition reprinted in English translation by Chelsea Publishing, New York, 1966), pp. 45-50.Google Scholar
  33. 33.
    T. Van Flandern, Dark Matter, Missing Planets and New Comets (North Atlantic Books, Berkeley, 1993; 2nd edn., 1999), pp. 45-50.Google Scholar
  34. 34.
    D. M. Greenberger and A. W. Overhauser, Scientific American 242, 66 (May 1980).Google Scholar
  35. 35.
    C. W. Sherwin and R. D. Rawcliffe, Report I-92 of March 14, 1960 of the Consolidated Science Laboratory (University of Illinois, Urbana); obtainable from U.S. Department of Commerce's Clearinghouse for Scientific and Technical Information, document AD 625706.Google Scholar
  36. 36.
    T. E. Phipps, Jr., Heretical Verities (Classic Non-fiction Library, Urbana, 1986), pp. 273-282.Google Scholar
  37. 37.
    M. A. Rowe et al., “Experimental violation of a Bell's inequality with efficient detection,” Nature 409, 791-794 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Tom Van Flandern
    • 1
  • Jean-Pierre Vigier
    • 2
  1. 1.Meta ResearchWashington
  2. 2.CNRS, L.R.M. (UMR 8540) - E.R.G.A.Université Paris VIParisFrance

Personalised recommendations