Advertisement

Hydrobiologia

, Volume 471, Issue 1–3, pp 149–155 | Cite as

DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa)

  • Scott C. France
  • Loretta L. Hoover
Article

Abstract

We are analyzing genetic diversity in deep-seamount octocorals with the ultimate goal of studying the effect of retention and dispersal of larvae on genetic population structure. Here we report on the sequence diversity of the mitochondrial cytochrome oxidase I (COI) gene among 11 species. Uncorrected pairwise sequence divergences ranged from 0.4–10.3% for comparisons among species spanning the intrageneric to interordinal levels. Relative to other invertebrates, these divergences are very low, suggesting that COI may not be useful as a genetic marker for studying dispersal among deep-sea octocoral populations. Possible explanations for the reduced rates of divergence observed include a lower rate of evolution for octocoral mitochondrial genomes and the presence of a gene, mtMSH, which may code for a mitochondrial DNA mismatch-repair system. We report the finding of mtMSH in three deep-sea octocorals (Acanthogorgia sp., Corallium ducale, and Paramuricea sp.), which brings the total published observations of this gene to six species, all in the subclass Octocorallia.

cytochrome oxidaseOctocorallia Alcyonaria MutS gene MSH 16S rRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise, J. C., 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York: 511 pp.Google Scholar
  2. Baldwin, J. D., A. L. Bass, B. W. Bowen & W. H. Clark, Jr., 1998. Molecular phylogeny and biogeography of the marine shrimp Penaeus. Molec. Phylogen. Evol. 10: 399–407.Google Scholar
  3. Bayer, F. M., 1981. Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnosis of new Taxa. Proc. biol. Soc. Wash. 94: 902–947.Google Scholar
  4. Beagley, C. T., J. L. Macfarlane, G. A. Pont-Kingdon, R. Okimoto, N. A. Okada & D. R. Wolstenholme, 1995. Mitochondrial genomes of Anthozoa (Cnidaria). In: Palmieri F., S. Papa, C. Saccone & M. N. Gadaleta (eds), Thirty Years of Progress in Mitochondrial Bioenergetics and Molecular Biology, Progress in Cell Research, 5: 149–153.Google Scholar
  5. Beaton, M. J., A. J. Roger & T. Cavalier-Smith, 1998. Sequence analysis of the mitochondrial genome of Sarcophyton glaucum: conserved gene order among octocorals. J. mol. Evol. 47: 697–708.Google Scholar
  6. Berntson, E. A. & S. C. France, 2001. Generating DNA sequence information from museum collections of octocoral specimens (Phylum Cnidaria: Class Anthozoa). Bull biol. Soc. Wash. 10: 119–129.Google Scholar
  7. Berntson, E. A., F. M. Bayer, A. G. Mcarthur & S. C. France, 2001. Phylogenetic relationships within the Octocorallia (Cnidaria: Anthozoa) based on nuclear 18S rRNA sequences. Mar. Biol. 138: 235–246.Google Scholar
  8. Burton, R. S., 1996. Molecular tools in marine ecology. J. Exp. mar. Biol. Ecol. 200: 85–101.Google Scholar
  9. Culligan, K. M., G. Meyer-Gauen, J. Lyons-Weiler & J. B. Hays, 2000. Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucl. Acids Res. 28: 463–471.Google Scholar
  10. France, S. C. & L. L. Hoover, 2001. Analysis of variation in mitochondrial DNA sequences (ND3, ND4L, MSH) among Octocorallia (=Alcyonaria)(Cnidaria: Anthozoa). Bull biol. Soc. Wash. 10: 110–118.Google Scholar
  11. France, S. C. & T. D. Kocher, 1996. DNA sequencing of formalin-fixed crustaceans from archival research collections. Mol. mar. Biol. Biotech. 5: 304–313.Google Scholar
  12. France, S. C., P. E. Rosel, J. E. Agenbroad, L. S. Mullineaux & T. D. Kocher, 1996. DNA sequence variation of mitochondrial largesubunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria). Mol. mar. Biol. Biotech. 5: 15–28.Google Scholar
  13. Gilbert, D. G., 1992. SeqApp: a biosequence editor and analysis application. Ver. 1.9a169. Published electronically on the Internet, available via anonymous ftp from ftp.bio.indiana.edu/molbio/seqappGoogle Scholar
  14. Grasshoff, M., 1999. The shallow water gorgonians of New Caledonia and adjacent islands (Coelenterata: Octocorallia). Senckenberg. Biol. 78: 1–245.Google Scholar
  15. Knowlton, N., L. A. Weigt, L. A. Solórzano, D. K. Mills & E. Bermingham, 1993. Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260: 1629–1632.Google Scholar
  16. Kojima, S., R. Segawa, T. Kobayashi, T. Hashimoto, K. Fujikura, J. Hashimoto & S. Ohta, 1995. Phylogenetic relationships among species of Calyptogena (Bivalvia: Vesicomyidae) collected around Japan revealed by nucleotide sequences of mitochondrial genes. Mar. Biol. 122: 401–407.Google Scholar
  17. Medina, M. & P. J. Walsh, 2000. Molecular systematics of the order Anaspidea based on mitochondrial DNA sequence (12S, 16S, and COI). Molec. Phylogen. Evol. 15: 41–58.Google Scholar
  18. Meyran, J. C., M. Monnerot & P. Taberlet, 1997. Taxonomic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequences. Molec. Phylogen. Evol. 8: 1–10.Google Scholar
  19. Mullineaux, L. S. & S. W. Mills, 1997. A test of the larval retention hypothesis in seamount-generated flows. Deep-Sea Res. 44: 745–770.Google Scholar
  20. Palumbi, S. R., 1996. Nucleic acids II: The polymerase chain reaction. In: Hillis, D. M., C. Moritz & B. K. Mable (eds) Molecular Systematics, 2nd edn. Sinauer Associates, Inc., Sunderland, Mass.: 205–247.Google Scholar
  21. Parker, P. G., A. A. Snow, M. D. Schug, G. C. Booton & P. A. Fuerst, 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79: 361–382.Google Scholar
  22. Perez, M. L., J. R. Valverde, B. Batuecas, F. Amat, R. Marco & R. Garesse, 1994. Speciation in the Artemia genus: Mitochondrial DNA analysis of bisexual and parthenogenetic brine shrimps. J. mol. Evol. 38: 156–168.Google Scholar
  23. Pont–Kingdon, G. A., N. A. Okada, J. L. Macfarlane, C. T. Beagley, D. R. Wolstenholme, T. Cavalier-Smith & G. D. Clark-Walker, 1995. A coral mitochondrial mutS gene. Nature 375: 109–111.Google Scholar
  24. Pont–Kingdon, G., N. A. Okada, J. L. Macfarlane, C. T. Beagley, C. D. Watkins-Sims, T. Cavalier-Smith, G. D. Clark-Walker & D. R. Wolstenholme, 1998. Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J. mol. Evol. 46: 419–431.Google Scholar
  25. Roden, G. I., 1991. Mesoscale flow and thermohaline structure around Fieberling seamount. J. geophys. Res. 96: 16,653–16,672.Google Scholar
  26. Shank, T. M., M. B. Black, K. M. Halanych, R. A. Lutz & R. C. Vrijenhoek, 1999. Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit I. Molec. Phylogen. Evol. 13: 244–254.Google Scholar
  27. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu & P. Flook, 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. entomol. Soc. Am. 87: 651–701.Google Scholar
  28. Swofford, D. L., 2000. PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  29. Wolstenholme, D. R., 1992. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 141: 173–216.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Scott C. France
    • 1
  • Loretta L. Hoover
    • 1
  1. 1.Department of BiologyCollege of CharlestonCharlestonU.S.A.

Personalised recommendations