Skip to main content
Log in

Indigenous microflora and opportunistic pathogens of the freshwater zebra mussel, Dreissena polymorpha

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater fouling invertebrate zebra mussels (Dreissena polymorpha) harbor a diverse population of microorganisms in the Great Lakes of North America. Among the indigenous microorganisms, selective species are opportunistic pathogens to zebra mussels. Pathogenicity to zebra mussels by opportunistic bacteria isolated from the mussels was investigated in this study. Among the more than 30 bacteria isolated from temperature-stressed mussels, Aeromonas media, A. veronii, A. salmonicida subsp. salmonicida, and Shewanella putrefaciens are virulent pathogens to juvenile zebra mussels. Inoculation of a bacterial concentration of A. media, A. salmonicida subsp. salmonicida and S. putrefaciens at 107 cells per zebra mussel resulted in 100% mortality within 5 days, and only 64.9% for A. veronii. In contrast, mortality was less than 12.3% following inoculation of a sterile phosphate buffer solution as a control. In addition, mortality was dependent on the size of the pathogen population used in inoculation and the incubation temperature, indicating the close relationship between the bacterial population and subsequent death. On the mussel tissue, a dense microbial population was evident from the moribund mussels viewed with Scanning Electron Microscope (SEM). Opportunistic bacteria invaded and destroyed the D. polymorpha tissue after 7 days of incubation when the bacterial inoculation was larger than 105 per zebra mussel. Our results suggest that mussels are reservoirs of opportunistic pathogenic microorganisms to aquatic organisms and humans and a better understanding of the microbial ecology of the mussels will provide insights to the possible health hazards from these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, B. & C. Adam, 1996. Fish pathogens. In Austin, B., M. Altewegg, P. J. Goslingn & S. W. Joseph (eds), The Genus Aeromonas. John Wiley, West Sussex, England: 197-244.

    Google Scholar 

  • Borcherding, J., 1991. The annual reproductive cycle of the freshwater mussel Dreissena polymorpha Palla in lakes. Oecologia 87: 208-218.

    Google Scholar 

  • Breznak, J. A. & A. Brune, 1994. Role of micro-organisms in the digestion of lignocellulose by termites. Ann. Rev. Entomol. 39: 453-387.

    Google Scholar 

  • Callow, M., 1993. A review of fouling in freshwaters. Biofouling. 7: 313-327.

    Google Scholar 

  • Carlton, J. T. & J. B. Geller, 1993. Ecological roulette: the global transport of nonindigenous marine organisms. Science 261: 78-82.

    Google Scholar 

  • Distel, D. L., H. K.-W. Lee & C. M. Cavanaugh, 1995. Intracellular coexistence of methano-and thioautotrophic bacteria in a hydrothermal vent mussel. Proc. natl. Acad. Sci. U.S.A. 92: 9598-9602.

    Google Scholar 

  • Ducklow, H. W., K. Clausen & R. Mitchell, 1981. Ecology of bacterial communties in the schistosomiasis vector snail Biomphalaris glabrata. Microbiol. Ecol. 7: 253-274.

    Google Scholar 

  • Ducklow, H. W. & R. Mitchell, 1979. Observations on naturally and artificially diseased tropical corals: a scanning electron microscope study. Microb. Ecol. 5: 215-223.

    Google Scholar 

  • Ducklow, H. W., H. M. Tarraza & R. Mitchell, 1980. Experimental pathogenicity of Vibrio parahaemolyticus for the schistosomebearing snail Biomphalaria glabrata. Can. J.Microbiol. 26: 503-506.

    Google Scholar 

  • Gosling, P. J., 1996. Aeromonas species in disease of animals. In Austin, B., M. Altewegg, P. J. Goslingn & S. W. Joseph (eds), The Genus Aeromonas. John Wiley, West Sussex, England: 175-196.

    Google Scholar 

  • Grimes, D. J., R. R. Colwell, J. Stemmler, H. Hada, D. Maneval, F. M. Hetrick, E. B. May, R. T. Jones & M. Stoskopf, 1984. Vibrio species as agents of elasmobranch disease. Helgol Meeresunters 37: 309-315.

    Google Scholar 

  • Gu, J.-D., J. Maki & R. Mitchell, 1994. Biological control of zebra mussels by their indigenous bacteria. In University of Wisconsin Sea Grant (ed.), Proceedings of the 4th International Zebra Mussel Conference, Madison, Wisconsin: 219-229.

    Google Scholar 

  • Gu, J.-D. & R. Mitchell, 1995. Use of indigenous bacteria and their metabolites for zebra mussel (Dreissena polymorpha) control. Dreissena 6: 5-8.

    Google Scholar 

  • Gu, J.-D. & R. Mitchell, 2001. Antagonism of bacterial extracellular metabolites to freshwater-fouling invertebrate zebra mussel, Dreissena polymorpha. J. Microbiol. 39: 133-138.

    Google Scholar 

  • Gu, J.-D., J. S. Maki & R. Mitchell, 1996. Microbial Biofilms and their role in the induction and inhibition of invertebrate settlement. In D'Itri, E. M. (ed), Zebra mussel and aquatic nuisance species, Ann Arbor Press, Chelsea, Michigan: 343-357.

    Google Scholar 

  • Haag, W. R., D. J. Berg, D.W. Garton & J. L. Farris, 1993. Reduced survival and fitness in native biovalveas in response to fouling by the introduced zebra mussel (Dreissena polymorpha) in western lake Erie. Can. J. Fish. aquat. Sci. 50: 13-19.

    Google Scholar 

  • Haag, W. R. & D. W. Carlton, 1992. Synchronous spawning in a recently established population of the zebra mussel, Dreissena polymorpha, in western Lake Erie, U.S.A. Hydrobiologia 234: 103-110.

    Google Scholar 

  • Hebert, P. D., B.W. Muncaster & G. L. Makie, 1989. Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusc in the Great Lakes. Can. J. Fish. aquat. Sci. 46: 1587-1591.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.

    Google Scholar 

  • Holmström, C., D. Rittschof & S. Kjelleberg, 1992. Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 58: 2111-2115.

    Google Scholar 

  • Hunter, P. R., 1997. Waterborne Disease: Epidemiology and Ecology. Wiley, West Sussex, England: 372 pp.

    Google Scholar 

  • Iwanyzki, S. & R. W. McCauley, 1992. Upper lethal temperatures of adult zebra mussels (Dreissena polymorpha). In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts and Control. Lewis Publishers, Chelsea, Michigan: 667-675.

    Google Scholar 

  • Janda, J. M. & S. L. Abbott, 1996. Human pathogens. In Austin, B., M. Altewegg, P. J. Goslingn & S. W. Joseph (eds), The Genus Aeromonas. John Wiley, West Sussex, England: 151-173.

    Google Scholar 

  • Klotz, M. G., 1993. The importance of bacterial growth phase in virulence and pathogenicity testing: coordinate stress response regulation in fluorecent pesudomonads? Can. J. Microbiol. 39: 948-957.

    Google Scholar 

  • Kovalak, W. P., G. D. Longton & R. D. Smothee, 1993. Infestation of power plant water systems by the zebra mussel (Dreissena polymorpha Pallas). In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts and Control. Lewis Publishers, Chelsea, Michigan: 359-380.

    Google Scholar 

  • Leith, E. G. & B. Sim, 1991. Methods for determining live-dead zebra mussels (Dreissena polymorpha). Report No. 91-92-K, Ontario Hydro, Canada.

    Google Scholar 

  • LePage, W. L., 1993. The impact of Dreissena polymorpha on waterworks operations at Monroe, Michigan: a case history. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts and Control. Lewis Publishers, Chelsea, Michigan: 333-358.

    Google Scholar 

  • Ludyanskiy, M. L., D. McDonald & D. MacNeill, 1993. Impact of the zebra mussel, a bivalve invader. BioScience 43: 533-544.

    Google Scholar 

  • Mackie, G. L., W. N. Gibbon, B. W. Muncaster & I. M. Gray, 1989. The zebra mussel, Dreissena polymorpha: a synthesis of European experiences and a preview for North America. Queens Printer for Ontario, Canada: 76 pp.

    Google Scholar 

  • Maki, J. S. & R. Mitchell, 1994. Effect of starvation stress on the heterotrophic bacterial flora of the zebra mussel, Dreissena polymorpha. In Abstracts of the 4th International Zebra Mussel Conference, Madison, Wisconsin.

    Google Scholar 

  • McMahon, R. F., T. A. Ussery, A. C. Miller & B. S. Payne, 1993. Thermal tolerance in zebra mussels (Dreissena polymorpha) relative to the rate of temperature increase and acclimation temperature. In Tsou, J. L. & Y. G. Mussalli (eds), Proceedings of the Third International Zebra Mussel Research Conference. Electric Power Research Institute, Palo Alto, California: 4-98–4-118.

    Google Scholar 

  • Olafsen, J. O., H. V. Mikkelsen, H. M. Giaever & G. H. Hansen, 1993. Indigenous bacteria in hemolyph and tissues of marine bivalves at low temperatures. Appl. Environ. Microbiol. 59: 1848-1854.

    Google Scholar 

  • Palumbo, S. A., 1996. The Aeromonas hydrophila group in food. In Austin, A., M. Altewegg, P. J. Goslingn & S. W. Joseph (eds), The Genus Aeromonas. JohnWiley, West Sussex, England: 287-310.

    Google Scholar 

  • Rittenhouse, R. C., 1991. Industry weapons grow in biofouling battle. Power Eng. October: 17-23.

  • Roberts, L., 1990. Zebra mussel invasion threatens U.S. waters. Science 249: 1370-1372.

    Google Scholar 

  • Ross, J., 1994. An aquatic invader is running amok in U.S. waterways. Smithsonian. 24: 40-51.

    Google Scholar 

  • Sakata, T., 1989. Microflora of healthy animals. In Austin, B. & D. A. Austin (eds), Methods for the Microbiological Examination of Fish and Shellfish. Ellis Harwood, West Sussex, England: 141-163.

    Google Scholar 

  • Schaechter, M., 1984. The establishment of infectious diseases. In Schaechter, M. & D. Schlessinger (eds), Mechanisms of Microbial Disease. Williams & Wilkins, Baltimore, Maryland: 3-16.

    Google Scholar 

  • Schlessinger, D. & M. Schaechter, 1984. Bacterial toxins. In Schaechter, M. & D. Schlessinger (eds), Mechanisms of Microbial Disease. Williams & Wilkins, Baltimore, Maryland: 147-163.

    Google Scholar 

  • Smith, H., 1977. Microbial surfaces in relation to pathogenecity. Bacteriol. Rev. 41: 475-500.

    Google Scholar 

  • Wiktor, J., 1963. Research on the ecology of Dreissena polymorpha (Pall.) in the Szezecin Lagoon (Zelew Szezecinski). Ekol. Pol. 11: 275-280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, JD., Mitchell, R. Indigenous microflora and opportunistic pathogens of the freshwater zebra mussel, Dreissena polymorpha . Hydrobiologia 474, 81–90 (2002). https://doi.org/10.1023/A:1016517107473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016517107473

Navigation