Skip to main content
Log in

A molecular phenotype atlas of the zebrafish retina

  • Published:
Journal of Neurocytology

Abstract

The rasborine cyprinid Danio rerio (the zebrafish) has become a popular model of retinal function and development. Its value depends, in part, on validation of homologies with retinal cell populations of cyprinine cyprinids. This atlas provides raw and interpreted molecular phenotype data derived from computationally classified sets of small molecule signals from different cell types in the zebrafish retina: L-alanine, L-aspartate, L-glutamine, L-glutamate, glutathione, glycine, taurine and γ-aminobutyrate. This basis set yields an 8-dimensional signature for every retinal cell and formally establishes molecular signature homologies with retinal neurons, glia, epithelia and endothelia of other cyprinids. Zebrafish photoreceptor classes have been characterized previously: we now show their metabolic profiles to be identical to those of the corresponding photoreceptors in goldfish. The inner nuclear layer is partitioned into precise horizontal, bipolar and amacrine cell layers. The horizontal cell layer contains at least three and perhaps all four known classes of cyprinine horizontal cells. Homologues of cyprinid glutamatergic ON-center and OFF-center mixed rod-cone bipolar cells are present and it appears likely that all five classes are present in zebrafish. The cone bipolar cells defy simple analysis but comprise the largest fraction of bipolar cells, as in all cyprinids. Signature analysis reveals six molecular phenotypes in the bipolar cell cohort: most are superclasses. The amacrine cell layer is composed of ≈64% GABA+ and 35% glycine+ amacrine cells, with the remainder being sparse dopaminergic interplexiform cells and other rare unidentified neurons. These different amacrine cell types are completely distinct in the dark adapted retina, but light adapted retinas display weak leakage of GABA signals into many glycinergic amacrine cells, suggesting widespread heterocellular coupling. The composition of the zebrafish ganglion cell layer is metabolically indistinguishable from that in other cyprinids, and the signatures of glial and non-neuronal cells display strong homologies with those in mammals. As in most vertebrates, zebrafish Müller cells possess a high glutamine, low glutamate signature and contain the dominant pool of glutathione in the neural retina. The retinal pigmented epithelium shows a general mammalian signature but also has exceptional glutathione content (5–10 mM), perhaps required by the unusually high oxygen tensions of teleost retinas. The optic nerve and the marginal zone of the retina reveal characteristic metabolic specializations. The marginal zone is strongly laminated and its nascent neurons display their characteristic signatures before taking their place in the retina proper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammermuller, J. & Weiler, R. (1981) The ramification pattern of amacrine cells within the inner plexiform layer of the carp retina. Cell & Tissue Research 220, 699–723.

    Google Scholar 

  • Ball, G. & Hall, D. (1967) Clustering technique for summarizing multivariate data. Behavioral Science 12, 153–155.

    Google Scholar 

  • Brandon, C. (1985) Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Research 344, 286–295.

    Google Scholar 

  • Cameron, D. A. (2000) Cellular proliferation and neurogenesis in the injured retina of adult zebrafish. Visual Neuroscience 17, 789–797.

    Google Scholar 

  • Cameron, D. A. & Carney, L. H. (2000) Cell mosaic patterns in the native and regenerated inner retina of zebrafish: Implications for retinal assembly. Journal of Comparative Neurology 416, 356–367.

    Google Scholar 

  • Cameron, D. A. & Powers, M. K. (2000) Morphology and visual pigment content of photoreceptors from injured goldfish retina. Visual Neuroscience 17, 623–630.

    Google Scholar 

  • Carroll, R. (1988) Vertebrate Paleontology and Evolution. New York: W. H. Freeman and Company.

    Google Scholar 

  • Connaughton, V. P., Behar, T. N., Liu, W. L. & Massey, S. C. (1999) Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Visual Neuroscience 16, 483–490.

    Google Scholar 

  • Cook, J. E. (1996) Spatial properties of retinal mosaics: An empirical evaluation of some existing measures. Visual Neuroscience 13, 15–30.

    Google Scholar 

  • Djamgoz, M. B. A., Wagner, H. J. & Witkovsky, P. (1995) Photoreceptor-horizontal cell connectivity, synaptic transmission and neuromodulation. In Neurobiology and Clinical Aspects of the Outer Retina (edited by Djamgoz, M., Archer, S. & Vallerga, S.) pp. 155–193. London: Chapman and Hall.

    Google Scholar 

  • Easter, S. S., Rusoff, A. C. & Kish, P. E. (1981) The growth and organization of the optic nerve and tract in juvenile and adult goldfish. Journal of Neuroscience 1, 793–811.

    Google Scholar 

  • Famiglietti, E. V. Jr., Kaneko, A. & Tachibana, M. (1975) Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science (Washington DC) 198, 1267–1269.

    Google Scholar 

  • Fletcher, E. L. & Kalloniatis, M. (1996) Neurochemical architecture of the normal and degenerating rat retina. Journal of Comparative Neurology 376, 343–360.

    Google Scholar 

  • Fonner, D. B., Hoffert, J. R. & Fromm, P. O. (1973) The importance of the counter current oxygen multiplier mechanism in maintaining retinal function in the teleost. Comparative Biochemistry & Physiology AComparative Physiology 46, 559–567.

    Google Scholar 

  • Hitchcock, P. F. & Easter, S. S. (1986) Retinal ganglion cells in goldfish: A qualitative classification into four morphological types, and a quantitative study of the development of one of them. Journal of Neuroscience 6, 1037–1050.

    Google Scholar 

  • Holmes, R. P. & Assimos, D. G. (1998) Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. Journal of Urology 160, 1617–1624.

    Google Scholar 

  • Inselberg, A. & Dimsdale, B. (1990) Parallel coordinates: A tool for visualizing multidimensional geometry. Proceedings of the First IEEE Conference on Visualization 1, 361–375.

    Google Scholar 

  • Ishida, A., Stell, W. & Lightfoot, D. (1980a) Rod and cone inputs to bipolar cells in goldfish retina. Journal of Comparative Neurology 191, 315–335.

    Google Scholar 

  • Ishida, A. T., Stell, W. K. & Lightfoot, D. O. (1980b) Rod and cone inputs to bipolar cells in goldfish retina. Journal of Comparative Neurology 191, 315–335.

    Google Scholar 

  • Johns, P. R. (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. Journal of Comparative Neurology 176, 343–357.

    Google Scholar 

  • Johnson, J., Chen, T. K., Rickman, D. W., Evans, C. & Brecha, N. C. (1996) Multiple gamma-Aminobutyric acid plasma membrane transporters (GAT-1, GAT-2, GAT-3) in the rat retina. Journal of Comparative Neurology 375, 212–224.

    Google Scholar 

  • Jones, B. W., Howard, J., Beg, A., Watt, C. B. & Marc, R. E. (1999) Ionotropic glutamatergic drive histories of amacrine cell layer neurons reported by 1-amino-4-guanidobutane (AGB) in vivo. Investigative Ophthalmology and Visual Science 40, S440.

    Google Scholar 

  • Kalloniatis, M. & Fletcher, E. L. (1993) Immunocytochemical localization of the amino acid neurotransmitters in the chicken retina. Journal of Comparative Neurology 336, 174–193.

    Google Scholar 

  • Kalloniatis, M. & Marc, R. E. (1990) Interplexiform cells of the goldfish retina. Journal of Comparative Neurology 297, 340–358.

    Google Scholar 

  • Kalloniatis, M., Marc, R. E. & Murry, R. F. (1996) Amino acid signatures in the primate retina. [erratum appears in J Neurosci 1997 Jan 1;17(1), 500-503]. Journal of Neuroscience 16, 6807–6829.

    Google Scholar 

  • Kalloniatis, M. & Napper, G. A. (1996) Glutamate metabolic pathways in displaced ganglion cells of the chicken retina. Journal of Comparative Neurology 367, 518–536.

    Google Scholar 

  • Kalloniatis, M. & Tomisich, G. (1999) Amino acid neurochemistry of the vertebrate retina. Progress in Retinal & Eye Research 18, 811–866.

    Google Scholar 

  • Kalloniatis, M., Tomisich, G. & Marc, R. E. (1994) Neurochemical signatures revealed by glutamine labeling in the chicken retina. Visual Neuroscience 11, 793–804.

    Google Scholar 

  • Kamermans, M., Fahrenfort. I., Schultz, K., Janssen-Bienhold, U., Sjoerdsma, T. & Weiler, R. (2001) Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180.

    Google Scholar 

  • Kamermans, M. & Spekreijse, H. (1999) The feedback pathway from horizontal cells to cones. A mini review with a look ahead. Vision Research 39, 2449–2468.

    Google Scholar 

  • Lam, D. M., Su, Y. Y., Swain, L., Marc, R. E., Brandon, C. & Wu, J. Y. (1979) Immunocytochemical localisation of L-glutamic acid decarboxylase in the goldfish retina. Nature 278, 565–567.

    Google Scholar 

  • Lee, I. S., Nishikimi, M., Inoue, M., Muragaki, Y. & Ooshima, A. (1999) Specific expression of alanineglyoxylate aminotransferase 2 in the epithelial cells of Henle's loop. Nephron 83, 184–185.

    Google Scholar 

  • Li, X. M., Salido, E. C. & Shapiro, L. J. (1999) The mouse alanine: Glyoxylate aminotransferase gene (Agxt1): Cloning, expression, and mapping to chromosome 1. Somatic Cell & Molecular Genetics 25, 67–77.

    Google Scholar 

  • Macneil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E. & Masland, R. H. (1999) The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. Journal of Comparative Neurology 413, 305–326.

    Google Scholar 

  • Marc, R., Li, H.-B., Kalloniatis, M. & Arnold, J. (1993) Cholinergic subsets of GABAergic amacrine cells in the goldfish retina. Investigative Ophthalmology and Visual Science 34, S1061.

    Google Scholar 

  • Marc, R. E. (1982) Chromatic organization of the retina. In Cellular Aspects of the Eye (edited by McDevitt, D.) pp. 435–473. NY: Academic Press.

    Google Scholar 

  • Marc, R. E. (1986) Neurochemical stratification in the inner plexiform layer of the vertebrate retina. Vision Research 26, 223–238.

    Google Scholar 

  • Marc, R. E. (1992) Structural organization of GABAergic circuitry in ectotherm retinas. Progress in Brain Research 90, 61–92.

    Google Scholar 

  • Marc, R. E. (1999a) Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. Journal of Comparative Neurology 407, 47–64.

    Google Scholar 

  • Marc, R. E. (1999b) The structure of vertebrate retinas. In The Retinal Basis of Vision (edited by Toyoda, J.-I., Murkami, M., Kaneko, A. & Saito, T.) pp. 3–19. Amsterdam: Elsevier.

    Google Scholar 

  • Marc, R. E. & Jones, B. W. (2002) Molecular phenotyping of retinal ganglion cells. Journal of Neuroscience 22, 413–427.

    Google Scholar 

  • Marc, R. E. & Lam, D. M. K. (1981) Glycinergic pathways in the goldfish retina. Journal of Neuroscience 1, 152–165.

    Google Scholar 

  • Marc, R. E. & Liu, W. L. (1984) Horizontal cell synapses onto glycine-accumulating interplexiform cells. Nature 312, 266–269.

    Google Scholar 

  • Marc, R. E. & Liu, W. (2000) Fundamental GABAergic amacrine cell circuitries in the retina: Nested feedback, concatenated inhibition, and axosomatic synapses. Journal of Comparative Neurology 425, 560–582.

    Google Scholar 

  • Marc, R. E., Liu, W. L., Kalloniatis, M., Raiguel, S. F. & Van Haesendonck, E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina. Journal of Neuroscience 10, 4006–4034.

    Google Scholar 

  • Marc, R. E., Liu, W. L. & Muller, J. F. (1988a) Gapjunctions in the inner plexiform layer of the goldfish retina. Vision Research 28, 9–24.

    Google Scholar 

  • Marc, R. E., Liu, W. L., Scholz, K. & Muller, J. F. (1988b) Serotonergic and serotonin-accumulating neurons in the goldfish retina. Journal of Neuroscience 8, 3427–3450.

    Google Scholar 

  • Marc, R. E., Murry, R. F. & Basinger, S. F. (1995) Pattern recognition of amino acid signatures in retinal neurons. Journal of Neuroscience 15, 5106–5129.

    Google Scholar 

  • Marc, R. E., Murry, R. F., Fisher, S. K., Linberg, K. A. & Lewis, G. P. (1998a) Amino acid signatures in the detached cat retina. Investigative Ophthalmology & Visual Science 39, 1694–1702.

    Google Scholar 

  • Marc, R. E., Murry, R. F., Fisher, S. K., Linberg, K. A., Lewis, G. P. & Kalloniatis, M. (1998b) Amino acid signatures in the normal cat retina. Investigative Ophthalmology & Visual Science 39, 1685–1693.

    Google Scholar 

  • Marc, R. E., Stell, W. K., Bok, D. & Lam, D. M. (1978) GABAergic pathways in the goldfish retina. Journal of Comparative Neurology 182, 221–244.

    Google Scholar 

  • Marc, R. E. & Sperling, H. G. (1976) Color receptor identities of goldfish cones. Science 191, 487–489.

    Google Scholar 

  • Marc, R. E. & Sperling, H. G. (1977) The chromatic organization of the goldfish cone mosaic. Vision Research 16, 1211–1224.

    Google Scholar 

  • Marcus, R. C., Delaney, C. L., & Easter, S. S., Jr. (1999) Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio). Visual Neuroscience 16, 417–424.

    Google Scholar 

  • Marshak, D. W. & Dowling, J. E. (1987) Synapses of cone horizontal cell axons in goldfish retina. Journal of Comparative Neurology 256, 430–443.

    Google Scholar 

  • Marshak, D. W., Yamada, T. & Stell, W. K. (1982) Synaptic contacts of somatostatin immuno reactive amacrine cells in goldfish retina. Journal of Comparative Neurology 225, 44–52.

    Google Scholar 

  • Massey, S. C., Mills, S. L. & Marc, R. E. (1992) All indoleamine-accumulating cells in the rabbit retina containGABA. Journal of Comparative Neurology 322, 275–291.

    Google Scholar 

  • Michal, G. (1999) Amino acids and derivatives. In Biochemical Pathways (edited by Michal, G.) pp. 46–67. NY: Wiley & Sons.

    Google Scholar 

  • Miyachi, E., Hidaka, S. & Murkami, M. (1999) Electrical couplings of retinal neurons. In (edited by Toyoda, J.-I., Murakami, M., Kaneko, A. & Saito, T.) pp. 171–184. Amsterdam: Elsevier.

    Google Scholar 

  • Moeckel, G. W., Lai, L. W., Guder, W. G., Kwon, H. M. & Lien, Y. H. (1997) Kinetics and osmoregulation of Na+-and Cl--dependent betaine transporter in rat renal medulla. American Journal of Physiology 272, F100–106.

    Google Scholar 

  • Morimura, H., Shimada, S., Otori, Y., Saishin, Y., Yamauchi, A., Minami, Y., Inoue, K., Ishimoto, I., Tano, Y. & Tohyama, M. (1997) The differential osmoregulation and localization of taurine transporter mRNA and Na+/myo-inositol cotransporter mRNA in rat eyes. Brain Research Molecular Brain Research 44, 245–252.

    Google Scholar 

  • Mosinger, J. L. & Yazulla, S. (1985) Colocalization of GAD-like immunoreactivity and 3H-GABA uptake in amacrine cells of rabbit retina. Journal of Comparative Neurology 240, 396–406.

    Google Scholar 

  • Mosinger, J. L., Yazulla, S. & Studholme, K. M. (1986) GABA-like immunoreactivity in the vertebrate retina: A species comparison. Experimental Eye Research 42, 631–644.

    Google Scholar 

  • Naka, K. I. & Christensen, B. N. (1981) Direct electrical connections between transient amacrine cells in the catfish retina. Science 214, 462–464.

    Google Scholar 

  • Pow, D. V. (1998) Transport is the primary determinant of glycine content in retinal neurons. Journal of Neurochemistry 70, 2628–2636.

    Google Scholar 

  • Pow, D. V. & Crook, D. K. (1996) Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: Use of specific antibodies directed against the d-stereoisomers of glutamate and glutamine. Neuroscience 70, 295–302.

    Google Scholar 

  • Pow, D. V. & Robinson, S. R. (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60, 355–366.

    Google Scholar 

  • Raymond, P. A. (1990) Horizontal cell axon terminals in growing goldfish. Experimental Eye Research 51, 675–683.

    Google Scholar 

  • Raymond, P. A., Barthel, L. K., Rounsifer, M. E., Sullivan, S. A. & Knight, J. K. (1993) Expression of rod and cone visual pigments in goldfish and zebrafish: A rhodopsin-like gene is expressed in cones. Neuron 10, 1161–1174.

    Google Scholar 

  • Roberts, M. F. (2000) Osmoadaptation and osmoregulation in archaea. Frontiers in Bioscience 5, D796–D812.

    Google Scholar 

  • Robinson, J., Schmitt, E. A., Harosi, F. I., Reece, R. J. & Dowling, J. E. (1993) Zebrafish ultraviolet visual pigment: Absorption spectrum, sequence, and localization. Proceedings of the National Academy of Sciences of the United States of America 90, 6009–6012.

    Google Scholar 

  • Sakai, H. M. & Naka, K. (1988) Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells. Journal of Neurophysiology 60, 1568–1583.

    Google Scholar 

  • Sandell, J. H. & Masland, R. H. (1989) Indoleamine accumulation by retinal neurons exposed to blood. Histochemistry 92, 57–60.

    Google Scholar 

  • Sandell, J. H., Masland, R. H., Raviola, E. & Dacheux, R. F. (1989) Connections of indoleamineaccumulating cells in the rabbit retina. Journal of Comparative Neurology 283, 303–313.

    Google Scholar 

  • Schaffer, S., Takahashi, K. & Azuma, J. (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19, 527–546.

    Google Scholar 

  • Scholes, J. H. (1975) Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. Philosophical Transactions of the Royal Society of LondonSeries B: Biological Sciences 270, 61–118.

    Google Scholar 

  • Scholes, J. & Morris, J. (1973) Receptor–bipolar connectivity patterns in fish retina. Nature 241, 52–54.

    Google Scholar 

  • Sherry, D. M. & Yazulla, S. (1992) Goldfish bipolar cells and axon terminal patterns: A Golgi study. Journal of Comparative Neurology.

  • Stell, W. K. (1965) Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anatomical Record 153, 389–397.

    Google Scholar 

  • Stell, W. K. (1967) The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. American Journal of Anatomy 121, 401–423.

    Google Scholar 

  • Stell, W. K. (1975) Horizontal cell axons and axon terminals in goldfish retina. Journal of Comparative Neurology 159, 503–520.

    Google Scholar 

  • Stell, W. K. & Harosi, F. I. (1975) Cone structure and visual pigment content in the retina of the goldfish.Vision Research 16, 647–657.

    Google Scholar 

  • Stell, W. K. & Lightfoot, D. O. (1975) Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. Journal of Comparative Neurology 159, 473–502.

    Google Scholar 

  • Stenkamp, D. L., Powers, M. K., Carney, L. H. & Cameron, D. A. (2001) Evidence for two distinct mechanisms of neurogenesis and cellular pattern formation in regenerated goldfish retinas. Journal of Comparative Neurology 431, 363–381.

    Google Scholar 

  • Studholme, K. M. & Yazulla, S. (1988) Localization of GABA and glycine in goldfish retina by electron microscopic postembedding immunocytochemistry: Improved visualization of synaptic structures with LR white resin. Journal of Neurocytology 17, 859–870.

    Google Scholar 

  • Tumosa, N., Eckenstein, F. & Stell, W. K. (1984) Immunocytochemical localization of putative cholinergic neurons in the goldfish retina. Neuroscience Letters 48, 255–259.

    Google Scholar 

  • Tumosa, N. & Stell, W. K. (1986) Choline acetyltransferase immunoreactivity suggests that ganglion cells in the goldfish retina are not cholinergic. Journal of Comparative Neurology 244, 267–275.

    Google Scholar 

  • Van Haesendonck, E., Marc, R. E. & Missotten, L. (1993) New aspects of dopaminergic interplexiform cell organization in the goldfish retina. Journal of Comparative Neurology 333, 503–518.

    Google Scholar 

  • Verweij, J., Kamermans, M., Negishi, K. & Spekreijse, H. (1998) GABA sensitivity of spectrally classified horizontal cells in goldfish retina. Visual Neuroscience 15, 77–86.

    Google Scholar 

  • Wagner, H. J. & Wagner, E. (1988) Amacrine cells in the retina of a teleost fish, the roach (Rutilus rutilus): A Golgi study on differentiation and layering. Philosophical Transactions of the Royal Society of LondonSeries B: Biological Sciences 321, 263–324.

    Google Scholar 

  • Watt, C. B., Kalloniatis, M., Jones, B. W. & Marc, R. E. (2000) Studies examining the neurotransmitter properties of horizontal cell populations in the goldfish retina. Investigative Ophthalmology and Visual Science 41, S943.

    Google Scholar 

  • Yang, C. Y. & Yazulla, S. (1988) Localization of putative GABAergic neurons in the larval tiger salamander retina by immunocytochemical and autoradiographic methods. Journal of Comparative Neurology 277, 96–108.

    Google Scholar 

  • Yazulla, S. (1981) Gamma aminobutyric-acid-ergic synapses in the goldfish carassius-auratus retina an auto radiographic study of tritium labeled muscimol and tritium labeled gamma aminobutyric-acid binding. Journal of Comparative Neurology 200, 83–94.

    Google Scholar 

  • Yazulla, S. (1991) The mismatch problem for gabaergic amacrine cells in goldfish retina resolution and other issues. Neurochemical Research.

  • Yazulla, S., Mosinger, J. & Zucker, C. (1984) Two types of pyriformAbamacrine cells in the goldfish retina: An EM analysis of [3H]GABA uptake and somatostatinlike immunoreactivity. Brain Research 321, 352–356.

    Google Scholar 

  • Yazulla, S. & Studholme, K. M. (1991) Glycinergic interplexiform cells make synaptic contact with amacrine cell bodies in goldfish retina. Journal of Comparative Neurology 310, 1–10.

    Google Scholar 

  • Yazulla, S., Studholme, K. & Wu, J. Y. (1986) Comparative distribution of 3H-GABA uptake and GAD immunoreactivity in goldfish retinal amacrine cells: A double-label analysis. Journal of Comparative Neurology 244, 149–162.

    Google Scholar 

  • Yazulla, S., Studholme, K. M. & Wu, J. Y. (1987) GABAergic input to the synaptic terminals of mb1 bipolar cells in the goldfish retina. Brain Research 411, 400–405.

    Google Scholar 

  • Yazulla, S., Studholme, K. M. & Zucker, C. L. (1985) Synaptic organization of substance P-like immunoreactive amacrine cells in goldfish retina. Journal of Comparative Neurology 231, 232–238.

    Google Scholar 

  • Yazulla, S. & Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neuroscience 1, 13–29.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marc, R.E., Cameron, D. A molecular phenotype atlas of the zebrafish retina. J Neurocytol 30, 593–654 (2001). https://doi.org/10.1023/A:1016516818393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016516818393

Keywords

Navigation