Hydrobiologia

, Volume 474, Issue 1–3, pp 57–66 | Cite as

Nutrient availability in the sediment and the reciprocal effects between the native seagrass Cymodocea nodosa and the introduced rhizophytic alga Caulerpa taxifolia

  • Giulia Ceccherelli
  • Nicola Sechi

Abstract

Two reciprocal experiments testing for the effects of nutrient addition in the sediment and competitive interactions between the native seagrass Cymodocea nodosa (Ucria) Ascherson and the introduced alga Caulerpa taxifolia (Vahl) C. Agardh were performed. This study was conducted for 13 months (August 1995 until September 1996) in a bay on the south coast of Elba Island (Italy). Each experiment consisted of the manipulation of the level of nutrients (addition vs. control) and the manipulation of the neighbours (presence vs. removal). Response variables were blade density and size for one experiment and shoot density and leaf length of seagrass in the other. Results indicated that the presence of Caulerpa taxifolia did not affect significantly Cymodocea nodosa shoot density and the increased nutrient availability in the sediment did not alter this pattern. Neither the removal of the canopy of the seagrass nor the fertilization of the sediment has influenced significantly the density of the alga. Both species, where co-occurring, show larger size than where the neighbour is removed. Hence, results of this study suggest that the two species on the long term are likely to coexist and that the high nutrient supply of the sediment would not enhance the probability of success neither of the seagrass nor of the alga. Predictions made on the basis of short-term results, that high nutrient loads of the substratum would have represented an even more suitable condition for C. taxifolia to colonize C. nodosa beds and that on the long-term the alga has a high probability of success, did not occur.

biological invasions Caulerpa taxifolia Cymodocea nodosa nutrient enrichment porewater nutrients species interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barko, J. W., D. Gunnison, S. R. Carpenter, 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot. 41: 41-65.Google Scholar
  2. Blackburn, T.H., 1987. Microbial food webs in sediments. In Sligh, M. A. (ed.), Microbes in the Sea. Ellis Horwood, Chichester: 39-58.Google Scholar
  3. Boudouresque, C. F., A. Meinesz, M. Verlaque & M. Knoeppfler-Peguy, 1992. The expansion of the tropical alga Caulerpa taxifolia (Chlorophyta) in the Mediterranean. Cryptogamie, Algol 13: 144-145.Google Scholar
  4. Boudouresque, C.F., 1997. Population dynamics of Caulerpa taxifolia in the Mediterranean, including the mechanisms of interspecific competition. Séminaire international ‘Dynamique d'espèces marines invasives: application à l'expansion de Caulerpa taxifolia en Méditerranée’, Lavoisier publ., Paris, Fr.: 145-162.Google Scholar
  5. Carlton, J. T., 1989. Man's role in changing the face of the ocean: biological invasions and implications for conservation of nearshore environments. Conserv. Biol. 3: 265-273.Google Scholar
  6. Ceccherelli, G, 1997. Aspetti ecologici di Caulerpa taxifolia (Vahl) C. Agardh (Chlorophyta, Caulerpales): interazioni biotiche e fattori fisici e chimici. Ph.D. Thesis, Dipartimento dell'Uomo e dell'Ambiente, Università di Pisa: 138 pp.Google Scholar
  7. Ceccherelli, G. & F. Cinelli, 1997. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in the Mediterranean bay. J. Exp. mar. Biol. Ecol. 217: 165-177.Google Scholar
  8. Ceccherelli, G. & F. Cinelli, 1998. Habitat effect on spatio-temporal variability of size and density of the introduced alga Caulerpa taxifolia. Mar. Ecol. Prog. Ser. 163: 289-294.Google Scholar
  9. Ceccherelli, G. & Cinelli, F. 1999a. A pilot study of nutrient enriched sediments in a Cymodocea nodosa bed invaded by the introduced alga Caulerpa taxifolia. Bot. Mar. 42: 409-417.Google Scholar
  10. Ceccherelli, G. & F. Cinelli, 1999b. Effects of Posdonia oceanica canopy on Caulerpa taxifolia size in a north-western Mediterranean bay. J. exp. mar. Biol. Ecol. 240: 19-36.Google Scholar
  11. Ceccherelli, G., L. Piazzi & F. Cinelli, 1999. Response of the nonindigenous Caulerpa racemosa (Forsskål) J. Agardh to the native seagrass Posidonia oceanica (L.) Delile: effect of density of shoots and orientation of edges of meadows. J. exp. mar. Biol. Ecol. 243: 227-240.Google Scholar
  12. Delgado, O., C. Rodríguez-Prieto, E. Gacia, & Ballesteros, E. 1996. Lack of severe nutrient limitation in Caulerpa taxifolia (Vahl) C. Agardh, an introduced seaweed spreading over oligotrophic Northwestern Mediterranean. Bot. Mar. 39: 61-67.Google Scholar
  13. Den Hartog, C., 1997. Is Sargassum muticum a threat to eelgrass beds? Aquat. Bot. 58: 37-41.Google Scholar
  14. Druehl, L., 1973. Marine transplantation. Science 179: 1-12.Google Scholar
  15. Grasshoff, K., 1976. Methods of seawater analysis. Verlag Chemie, Weinheim.Google Scholar
  16. Hemminga, M.A., 1998. The root/rhizome system of seagrass: an asset and a burden. J. Sea. Res. 39: 183-196.Google Scholar
  17. Hemminga, M. A., P. G. Harrison & P. van Lent, 1991. The balance of nutrient losses and gains in seagrass meadows. Mar. Ecol. Prog. Ser. 71: 85-96.Google Scholar
  18. Hemminga, M. A., B. P. Koutstaal, J. Van Soelen & A. G. A. M. Merks, 1994. The nitrogen supply to intertidal eelgrass (Zostera marina L.). Mar. Biol. 118: 223-227.Google Scholar
  19. Hemminga M. A., P. Gwada, F. J. Slim, P. de Koyer & J. Kazungu, 1995. Leaf production and nutrient contents of the seagrass Thalassodendron ciliatum in the proximity of a mangrove forest (Gazi bay Kenya). Aquat. Bot. 50: 159-170.Google Scholar
  20. Kraemer G. P. & L. Mazzella, 1999. Nitrogen acquisition, storage, and use by the co-occurring Mediterranean seagrass Cymodocea nodosa and Zostera noltii. Mar. Ecol. Prog. Ser. 183: 95-103.Google Scholar
  21. Libes, M. & C. F. Boudouresque, 1987. Uptake and long-distance transport of carbon in the marine phanerogam Posdonia oceanica. Mar. Ecol. Prog. Ser. 38: 177-186.Google Scholar
  22. Lodge, D. M. 1993. Biological invasions: lessons for ecology. Trends Ecol. Evol. 8: 133-137.Google Scholar
  23. Lonstein, B. A., T. H. Blackburn & K. Henrisen, 1989. Aspects of nitrogen and carbon cycling in the northern Bering Shelf sediment. I. The significance of urea turnover in the mineralization of NH4 +. Mar. Ecol. Prog. Ser. 57: 237-247.Google Scholar
  24. Meinesz, A. & B. Hesse, 1991. Introduction and invasion de l'algue Caulerpa taxifolia en Méditerranée nord-occidentale. Oceanol. Acta. 14: 415-426.Google Scholar
  25. Meinesz, A., J. de Vaugelas, B. Hesse, & X. Mari, 1993. Spread of the introduced tropical green alga Caulerpa taxifolia in northern Mediterranean waters. J. Appl. Phycol. 5: 141-147.Google Scholar
  26. Norton, T. A., 1976. Why is Sargassum muticum so invasive. Br. Phycol. J 11: 297-298.Google Scholar
  27. Pedersen, M. F. & J. Borum, 1993. An annual nitrogen budget for a seagrass Zostera marina population. Mar. Ecol. Prog. Ser. 101: 169-177.Google Scholar
  28. Pirc, H. & B. Wollember, 1989. Seasonal changes in nitrogen, free amino acids, and C/N ratio in Mediterranean seagrasses. PSZNI: Mar. Ecol. 9: 167-179.Google Scholar
  29. Phillips, R. C., 1984. The ecology of eelgrass meadows in the Pacific Northwest: a community profile. US Fish and Wildlife Service Report FWS/OBS-84/24: 85 pp.Google Scholar
  30. Reusch, T. B. H., 1998. Differing effects of eelgrass Zostera marina on recruitment and growth of associated blue mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 167: 149-153.Google Scholar
  31. Reusch, T. B. H. & S. L. Williams, 1998. Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113: 428-441.Google Scholar
  32. Ribera, M. A. & C. F. Boudouresque, 1995. Introduced marine plants, with special reference to macroalgae: mechanisms and impacts. In Round, R. E. & D. J. Chapman (eds), Progress in Phycological Research. Biopress Ltd Publ., U.K. 11: 187-268.Google Scholar
  33. Short, F. T., 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot. 27: 41-57.Google Scholar
  34. Stapel, J. & M. A. Hemminga, 1997. Nutrient resorption from seagrass leaves. Mar. Biol. 128: 197-206.Google Scholar
  35. Stapel, J., R. L. Aarts, B. H. M. van Duynhoven, J. D. de Groot, P. H. W. van den Hoogen & M. A. Hemminga, 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar. Ecol. Prog. Ser. 134: 195-206.Google Scholar
  36. Trowbridge, C. D., 1995. Establishment of the green alga Codium bursa ssp. Tomentosoides on New Zealand rocky shores: current distribution and invertebrate grazers. J. Ecol. 83: 949-965.Google Scholar
  37. Underwood, A. J., 1997. Experiments in Ecology. Cambridge University Press, Cambridge, United Kingdom: 504 pp.Google Scholar
  38. Villèle, de X. & M. Verlaque, 1995. Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the north-western Mediterranean. Bot.Mar. 38: 79-87.Google Scholar
  39. Williams, S. L., 1984. Uptake of sediment ammonium and translocation in a marine green macroalga Caulerpa cupressoides. Limnol. Oceanogr. 29(2): 374-379.Google Scholar
  40. Wilson, S. D. & D. Tilman, 1991. Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72: 1050-1065.Google Scholar
  41. Wilson, S. D. & D. Tilman, 1995. Competitive responses of eight old-field plant species in four environments. Ecology 76: 1169-1180Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Giulia Ceccherelli
    • 1
  • Nicola Sechi
    • 1
  1. 1.Dipartimento di Botanica ed Ecologia VegetaleUniversità di SassariSassariItaly

Personalised recommendations