Skip to main content
Log in

Effect of CeO2 on Supported Pd Catalyst in the SCR of NO: A DRIFT Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The activity of Pd/Al2O3 and Pd/Al2O3–CeO2 samples has been tested in the selective catalytic reduction of NO by propene. It is found that the activity of Pd/Al2O3 decreases with calcination temperature, while the activity of Pd/Al2O3–CeO2 increases abnormally with increasing calcination temperature. Surface-area measurement shows both samples suffer a linear decrease in their surface area, so it is reasonable to attribute the activity enhancement to the effect of CeO2. The adsorption behavior and state of surface-active sites have been characterized by diffuse reflectance FTIR spectroscopy using CO and NO as probes and the effect of CeO2 has been revealed. The CeO2 component increases and stabilizes the dispersion of surface Pd species to prevent it from aggregating at high temperature. CeO2 may also act as a buffer during the redox cycle of Pd, lengthen the period of Pd redox procedure and render Pd a property of “inertia” in its redox process, thus increasing the activity of the Pd/Al2O3–CeO2 sample. The essential feature of both effects is the strong interaction between Pd and CeO2. The intensity of interaction increases linearly with calcination temperature and so does the sample activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Descorme, P. Gelin, C. Lecuyer et al., J. Catal. 177 (1998) 352.

    Google Scholar 

  2. A. Ali, W. Alvarez, C.J. Loughran et al., Appl. Catal. B 14 (1997) 13.

    Google Scholar 

  3. L.J. Lobree, A.W. Aylor, J.A. Reimer et al., J. Catal. 181 (1999) 189.

    Google Scholar 

  4. C. Pliangos, I.V. Yentekakis, V.G. Papadakis et al., Appl. Catal. B 14 (1997) 161.

    Google Scholar 

  5. B.J. Adelman and W.M.H. Sachtler, Appl. Catal. B 14 (1997) 1.

    Google Scholar 

  6. I.V. Yentekakis, R.M. Lambert, M.S. Tikhov et al., J. Catal. 176 (1998) 82.

    Google Scholar 

  7. C.T. Yeh, C.B. Wang, J.G. Chang et al., Appl. Catal. B 17 (1998) 51.

    Google Scholar 

  8. H. Muraki, K. Yokota and Y. Fujitani, Appl. Catal. 48 (1989) 93.

    Google Scholar 

  9. P. Fornasiero, J. Kaspar, V. Sergo et al., J. Catal. 182 (1999) 56.

    Google Scholar 

  10. J.E. Kubsh, J.S. Rieck and N.D. Spencer, Catalysis and Automotive Pollution Control II (Elsevier Science Publishers, Amsterdam, 1991).

    Google Scholar 

  11. J.R. Gonzalez-Velasco, M.A. Gutierrez-Ortiz et al., Appl. Catal. 22 (1999) 167.

    Google Scholar 

  12. G. Colon, M. Pijolat, F. Valdivieso et al., J. Chem. Soc., Faraday Trans. 94 (1998) 3717.

    Google Scholar 

  13. P.A. Weyrich, H. Trevino, W.F. Holderich and W.M.H. Sachtler, Appl. Catal. 163 (1997) 31.

    Google Scholar 

  14. Z.L. Liu and Y.L. Fu, Chinese J. Catal. 22 (2001) 62.

    Google Scholar 

  15. Z.L. Liu and Y.L. Fu, J. Mol. Catal. (China) 15 (2001) 81.

    Google Scholar 

  16. Y.A. Lokhov and A.A. Davydov, Kinet. Katal. 21 (1980) 1093.

    Google Scholar 

  17. C.M. Grill and R.D. Gonzalez, J. Phys. Chem. 84 (1980) 878.

    Google Scholar 

  18. R. Raval, G. Blyholder, S. Haq et al., J. Phys. Condens. Matter. 1 (1989) SB165.

    Google Scholar 

  19. X. Xu, P. Chen and D.W. Goodman, J. Phys. Chem. 98 (1994) 9242.

    Google Scholar 

  20. T.E. Hoost, K. Otto and K.A. Laframboise, J. Catal. 155 (1995) 303.

    Google Scholar 

  21. K. Almusaiteer and S.S.C. Chuang, J. Catal. 180 (1998) 161.

    Google Scholar 

  22. M. Valden, R.L. Keiski, N. Xiang et al., J. Catal. 161 (1996) 614.

    Google Scholar 

  23. D.W. Goodman, Chem. Rev. 95 (1995) 523.

    Google Scholar 

  24. K. Almusaiteer and S.S.C. Chuang, J. Catal. 184 (1999) 189.

    Google Scholar 

  25. M. Ricken, J. Nölting and I. Riess, J. Solid State Chem. 54 (1984) 89.

    Google Scholar 

  26. R. Korner, M. Ricken, J. Nölting et al., J. Solid State Chem. 78 (1989) 136.

    Google Scholar 

  27. V. Perrichon, A. Laachir, G. Bergeret, et al., J. Chem. Soc., Faraday Trans. 90 (1994) 773.

    Google Scholar 

  28. A. Laachir, V. Perrichon, A. Badri et al., J. Chem. Soc., Faraday Trans. 87 (1991) 1601.

    Google Scholar 

  29. A. Badri, J. Lamotte, J.C. Lavalley et al., Eur. J. Solid State Inorg. Chem. 28 (1991) 445.

    Google Scholar 

  30. A. Badri, C. Binet and J.C. Lavalley, J. Chem. Soc., Faraday Trans. 9,92 (1996) 1603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Zl., Fu, Yl., Tu, J. et al. Effect of CeO2 on Supported Pd Catalyst in the SCR of NO: A DRIFT Study. Catalysis Letters 81, 285–291 (2002). https://doi.org/10.1023/A:1016510013792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016510013792

Navigation