Skip to main content
Log in

Disposition and Tumor Localization of Mitomycin C–Dextran Conjugates in Mice

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Mitomycin C–Dextran conjugates (MMC-D) were intravenously (iv) injected in mice bearing subcutaneous sarcoma 180. The tissue distribution was determined for three 14C-labeled anionic conjugates (MMC-Dan) with molecular weights of 10, 70, and 500 kd and one cationic 70-kd 14C-conjugate (MMC-Dcat). The anionic conjugates were slowly cleared from the plasma, and their elimination rate decreased with increasing molecular weight. Radioactivity accumulated in liver, spleen, lymph nodes, and tumor but not in heart, lung, intestines, kidney, or muscle after iv injection of all types of 14C-MMC-Dan. In contrast, the cationic conjugate was rapidly cleared from the plasma and accumulated mostly in the liver and spleen, while tumor levels remained low. The antitumor effect of the 70-kd MMC-Dan, which afforded the highest tumor concentration, was superior to that of free MMC. Therefore, anionic mitomycin C–dextran conjugates with a high molecular weight may be useful for tumor targeting in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Poznanski and L. Cleland. In R. L. Juliano (ed.), Drug Delivery Systems, Oxford University Press, New York, 1980, pp. 253–315.

    Google Scholar 

  2. H. Sezaki and M. Hashida. CRC Crit. Rev. Ther. Drug Carrier Syst. 1:1–38 (1984).

    Google Scholar 

  3. B. C. F. Chu and J. M. Whiteley. Mol. Pharmacol. 13:80–88 (1977).

    Google Scholar 

  4. M. V. Pimm, J. A. Jones, M. R. Price, J. G. Middle, M. J. Embleton, and R. W. Baldwin. Cancer Immunol. Immunother. 12:125–134 (1984).

    Google Scholar 

  5. N. R. Worrell, A. J. Cumber, G. D. Parnell, W. C. J. Ross, and J. A. Forrester. Biochem. Pharmacol. 35:417–423 (1986).

    Google Scholar 

  6. T. Kojima, M. Hashida, S. Muranishi, and H. Sezaki. J. Pharm. Pharmacol. 32:30–34 (1980).

    Google Scholar 

  7. M. Hashida, A. Kato, T. Kojima, S. Muranishi, H. Sezaki, N. Tanigawa, K. Satomura, and Y. Hikasa. Gann 72:226–234 (1981).

    Google Scholar 

  8. A. Kato, Y. Takakura, M. Hashida, T. Kimura, and H. Sezaki. Chem. Pharm. Bull. 30:2951–2957 (1982).

    Google Scholar 

  9. M. Hashida, Y. Takakura, S. Matsumoto, H. Sasaki, A. Kato, T. Kojima, S. Muranishi, and H. Sezaki. Chem. Pharm. Bull. 31:2055–2363 (1983).

    Google Scholar 

  10. M. Hashida, A. Kato, Y. Takakura, and H. Sezaki. Drug Metab. Disp. 12:492–499 (1984).

    Google Scholar 

  11. Y. Takakura, S. Matsumoto, M. Hashida, and H. Sezaki. Cancer Res. 44:2505–2510 (1984).

    Google Scholar 

  12. S. Matsumoto, Y. Arase, Y. Takakura, M. Hashida, and H. Sezaki. Chem. Pharm. Bull. 33:2941–2947 (1985).

    Google Scholar 

  13. K. Honda, K. Satomura, M. Hashida, and H. Sezaki. Jpn. J. Cancer Chemother. (Tokyo) 12:311–317 (1985).

    Google Scholar 

  14. Y. Takakura, A. Kato, M. Hashida, K. Honda, A. Arimoto, K. Satomura, and H. Sezaki. J. Pharmacobio-Dyn. 8:357–364 (1985).

    Google Scholar 

  15. S. Matsumoto, A. Yamamoto, Y. Takakura, M. Hashida, N. Tanigawa, and H. Sezaki. Cancer Res. 46:4463–4468 (1986).

    Google Scholar 

  16. Y. Takakura, K. Mori, M. Hashida, and H. Sezaki. Chem. Pharm. Bull. 34:1775–1783 (1986).

    Google Scholar 

  17. Y. Takakura, M. Kitajima, S. Matsumoto, M. Hashida, and H. Sezaki. Int. J. Pharm. (in press).

  18. Y. Takakura, R. Atsumi, M. Hashida, and H. Sezaki. Int. J. Pharm. (in press).

  19. R. L. Schaar, T. F. Sparks, and S. Roseman. Anal. Biochem. 79:513–525 (1977).

    Google Scholar 

  20. H. Fujita. Jap. J. Clin. Oncol. 12:151–161 (1971).

    Google Scholar 

  21. D. T. Mahin and R. T. Loftberg. Anal. Biochem. 16:500–509 (1966).

    Google Scholar 

  22. S. T. Crooke. In S. K. Carter and S. T. Crooke (eds.), Mitomycin C, Academic Press, New York, 1979, pp. 1–4.

    Google Scholar 

  23. H. S. Schwartz and F. S. Philips. J. Pharmacol. Exp. Ther. 133:335–342 (1961).

    Google Scholar 

  24. B. M. Brenner, T. H. Hostetter, and H. D. Fumes. Am. J. Physiol. 234:F455–F460 (1978).

    Google Scholar 

  25. H. E. Schultze and J. F. Heremans. In H. E. Schultze and J. F. Heremans (eds.), Molecular Biology of Human Proteins, Elsevier, Amsterdam, 1966, pp. 450–517.

    Google Scholar 

  26. J. W. Baynes, J. Van Zile, L. A. Henderson, and S. R. Thorpe. Birth Defect. Orig. Art. Ser. 16:103–113 (1980).

    Google Scholar 

  27. C. W. Song and S. H. Levitt. Cancer Res. 31:587–589 (1971).

    Google Scholar 

  28. S. W. O'Connor and W. F. Bale. Cancer Res. 44:3719–3723 (1984).

    Google Scholar 

  29. C. DeDuve, T. Bastry, B. Poole, A. Trouet, P. Turkens, and F. U. Hoff. Biochem. Pharmacol. 79:2945–2951 (1974).

    Google Scholar 

  30. A. Trouet, D. D. Campeneere, and C. DeDuve. Nature (London) New Biol. 239:110–112 (1972).

    Google Scholar 

  31. B. Barlogie and B. Drewinko. Cancer Res. 40:1973–1980 (1980).

    Google Scholar 

  32. K. A. Kennedy, S. Rockwell, and A. C. Sartorelli. Cancer Res. 40:2356–2360 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takakura, Y., Takagi, A., Hashida, M. et al. Disposition and Tumor Localization of Mitomycin C–Dextran Conjugates in Mice. Pharm Res 4, 293–300 (1987). https://doi.org/10.1023/A:1016489002393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016489002393

Navigation