Skip to main content
Log in

The Application of the Unified Modeling Language in Object-Oriented Analysis of Healthcare Information Systems

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper concerns itself with the beneficial effects of the Unified Modeling Language (UML), a nonproprietary object modeling standard, in specifying, visualizing, constructing, documenting, and communicating the model of a healthcare information system from the user's perspective. The author outlines the process of object-oriented analysis (OOA) using the UML and illustrates this with healthcare examples to demonstrate the practicality of application of the UML by healthcare personnel to real-world information system problems. The UML will accelerate advanced uses of object-orientation such as reuse technology, resulting in significantly higher software productivity. The UML is also applicable in the context of a component paradigm that promises to enhance the capabilities of healthcare information systems and simplify their management and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Coad, P., and North, D., Object Models: Strategies, Patterns, and Applications, Yourdon Press, New Jersey, 1995.

    Google Scholar 

  2. Pancake, C., The promise and cost of object technology: A five-year forecast. Commun. ACM 33(10):22-49, 1995.

    Google Scholar 

  3. OMG, Unified Modeling Language Specification,Version 1.4, September 2001, Retrieved October 27, 2001, from http://www.omg.org/technology/documents/formal/uml.htm

  4. Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User Guide, Addison-Wesley, Reading, MA, 1998.

    Google Scholar 

  5. Fowler, M., UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley, Reading, MA, 1997.

    Google Scholar 

  6. Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference Manual, Addison-Wesley, Reading, MA, 1999.

    Google Scholar 

  7. Sittig, D. F., and Stead, W. W., Computer-based physician order entry: The state of the art. J. Am. Med. Inf. Assoc. 1(2):108-123, 1994.

    Google Scholar 

  8. Abdelhak, M., Grostick, S., Hanken, M. A., and Jacobs, E., Health Information: Management of a Strategic Resource, W.B. Saunders Company, Philadelphia, PA, 2001.

    Google Scholar 

  9. Whitten, J. L., Bentley, L. D., and Dittman, K. C., Systems Analysis and Design Methods, 5th edn., McGraw-Hill Irwin, New York, 2001.

    Google Scholar 

  10. Coad, P., and Yourdon, E., Object-Oriented Analysis, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  11. Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., and Jeremaes, P., Object-Oriented Development: The Fusion Method, Prentice-Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  12. Coad, P., and Yourdon, E., Object-Oriented Design, Yourdon Press, New Jersey, 1991.

    Google Scholar 

  13. Friedman, C. P., and Wyatt, J. C., Evaluation Methods in Medical Informatics, Springer-Verlag, New York, 1996.

    Google Scholar 

  14. Lee, F., Teich, J. M., Spurr, C. D., and Bates, D. W., Implementation of physician order entry: User satisfaction and self-reported usage patterns. J. Am. Med. Inf. Assoc. 3:43-55, 1995.

    Google Scholar 

  15. Weir, C., Lincoln, M., Roscoe, D., and Moreshead, G., Successful implementation of an integrated physician order entry application: A systems perspective. Proc. Annu. Symp. Comput. Appl. Med. Care pp. 790-794, 1995.

  16. Pressman, R. S., Software Engineering: A Practitioner's Approach, McGraw-Hill, New York, 1992.

    Google Scholar 

  17. Graham, I., Object-Oriented Methods, 2nd edn., Addison-Wesley, Reading, MA, 1994.

    Google Scholar 

  18. Booch, G., Object-Oriented Analysis and Design With Applications, 2nd edn., Benjamin/Cummings, Redwood City, CA, 1994.

    Google Scholar 

  19. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W., Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  20. Jacobson, I., Object-Oriented Software Engineering, Addison-Wesley, Reading, MA, 1993.

    Google Scholar 

  21. Rzepka, W., and Ohno, Y., Requirements engineering environments: Software tools for modeling user needs. IEEE Comput. 18(4):9-12, 1985.

    Google Scholar 

  22. LeBozec, C., Jaulent, M.-C., Zapletal, E., and Degoulet, P., Unified modeling language and design of a case-based retrieval system in medical imaging. Proc. AMIA Symp. pp. 887-891, 1998.

  23. Bailin, S. C., Object-oriented requirements analysis. In Dorfman, M., and Thayer, R. H. (eds.), Software Engineering, IEEE Computer Society Press, Los Alamitos, CA, pp. 286-307, 1997.

    Google Scholar 

  24. Sim, E., Object-oriented requirements analysis: Its challenges and use. In Gibson, R.G. (ed.), Object-Oriented Technologies: Opportunities and Challenges, Idea Group Publishing, Hershey, PA, pp. 1-24, 1999.

    Google Scholar 

  25. Martin, J., and Odell, J., Object-Oriented Analysis and Design, Prentice-Hall, Englewood Cliffs, NJ, 1992.

    Google Scholar 

  26. Egyhazy, C. J., Eyestone, S. M., Martino, J., and Hodgson, C. L., Object-oriented analysis and design:A methodology for modeling the computer-based patient record. Top. Health Inf. Manage. 19(1):48-65, 1998.

    Google Scholar 

  27. The Good Electronic Health Record, Retrieved November 1, 2001, from http://www.gehr.org/

  28. Synapses, Retrieved November 4, 2001, from http://www.cs.tcd.ie/synapses/public/

  29. CORBAMed, Retrieved November 4, 2001, from http://cgi.omg.org/cgi-bin/doclist.pl

  30. HL7 Version 3.0 RIM, Retrieved November 11, 2001, from http://www.hl7.org/about/

  31. Blobel, B., Advanced tool kits for EPR security. Int. J. Med. Inf. 60:169-175, 2000.

    Google Scholar 

  32. The European ISHTAR Project, Retrieved November 4, 2001, from http://www.ehto.org/ht_projects/initial_project_description/ishtar.html

  33. The European TrustHealth Project, Retrieved November 4, 2001, from http://www.ehto.org/ht_projects/html/dynamic/130.html

  34. Blobel, B., Application of the component paradigm for analysis and design of advanced health system architectures. Int. J. Med. Inf. 60:281-301, 2000.

    Google Scholar 

  35. Blobel, B., and Roger-France, F., A systematic approach for analysis and design of secure health information systems. Int. J. Med. Inf. 62:51-78, 2001.

    Google Scholar 

  36. Blobel, B., The European TrustHealth Project experiences with implementing a security infrastructure. Int. J. Med. Inf. 60:193-201, 2000.

    Google Scholar 

  37. Banhart, F., and Lohmann, R., An object-oriented approach for structuring the electronic medical record. Stud. Health Technol. Inf. 77:622-626, 2000.

    Google Scholar 

  38. Kuikka, E., Eerola, A., Porrasmaa, J., Miettinen, A., and Komulainen, J., Design of the SGML-based electronic patient record system with the use of object-oriented analysis methods. Stud. Health Technol. Inf. 68:838-841, 1999.

    Google Scholar 

  39. PARSEC, Patient Records for Shared Care, Royal Brompton Hospital NHS Trust, 1994, Retrieved April 28, 2001, from http://www.rbh.nthames.nhs.uk/PROJECTS/Parsec/parsec.htm

  40. Graeber, S., Object-oriented modeling of hospital information systems. Medinfo 8(1):492-497, 1995.

    Google Scholar 

  41. Kuma, H., and Tsuchiya, Y., Database access method for autonomous distributed total hospital information systems and its object-oriented design. Medinfo 8(1):387-390, 1995.

    Google Scholar 

  42. Seto, K., Kamiyama, T., and Matsuo, H., An object-modeling method for hospital information systems. Medinfo 98:981-985, 1998.

    Google Scholar 

  43. Hubner, U., Klein, F., Hofstetter, J., Kammeyer, G., and Seete, H., Building a web-based drug ordering system for hospitals: From requirements engineering to prototyping. Stud. Health Technol. Inf. 77:62-67, 2000.

    Google Scholar 

  44. Ohe, K., A hospital information system based on Common Object Request Broker Architecture (CORBA) for exchanging distributed medical objects-an approach to future environment of sharing healthcare information. Medinfo 9(2):962-964, 1998.

    Google Scholar 

  45. Ryder, R. M., and Inamdar, B., An object-oriented, knowledge-based system for cardiovascular rehabilitation. Proc. Annu. Symp. Comput. Appl. Med. Care pp. 280-283, 1995.

  46. Wang, C., Ohe, K., Sakurai, T., and Kaihara, S., An ECG storage and retrieval system embedded in client server HIS utilizing object-oriented DB. J. Med. Syst. 20(1):35-43, 1996.

    Google Scholar 

  47. Pappas, C., Mavromatis, A., Maglaveras, N., Tsikotis, A., Pangalos, G., and Ambrosiadou, V., Cardiological database management system as a mediator to clinical decision support. Methods Inf. Med. 35(1):52-58, 1996.

    Google Scholar 

  48. Lang, E., Bott, O. J., and Pretschner, D. P., Specification of a computer-based information system for ophthalmology using modeling and simulation techniques. Medinfo 8(2):1092, 1995.

    Google Scholar 

  49. Moller, D. P., and Horner, C., Object-oriented data management: An approach to computerized anesthesia documentation. Int. J. Clin. Monit. Comput. 10(4):247-250, 1993.

    Google Scholar 

  50. Glacomoni, M., Ruggiero, C., and Sacile, R., An object programming based environment for protein secondary structure prediction. Front. Med. Biol. Eng. 7(2):111-128, 1996.

    Google Scholar 

  51. Vahrson, W., Herman, K., Kleffe, J., and Witting, B., Object-oriented sequence analysis: SCL-A C++ class library. Comput. Appl. Biosci. 12(2):119-127, 1996.

    Google Scholar 

  52. Ptitsyn, A. A., and Grigorovich, D. A., Object-oriented data handler for sequence analysis software development. Comput. Appl. Biosc. 11(6):583-589, 1995.

    Google Scholar 

  53. Ensing, M., Paton, R., Speel, P. H., and Rada, R., An object-oriented approach to knowledge representation in a biomedical domain. Artif. Intell. Med. 6(6):459-482, 1994.

    Google Scholar 

  54. Bader, G.D., and Hogue, C.W.V., BIND-a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16(5):465-477, 2000.

    Google Scholar 

  55. Wells, I. G., Farnan, L. P., and Rayment, M. W., Client/server computing: Is the future direction for the clinical laboratory? Clin. Chim. Acta 248(1):31-8l, 1996.

    Google Scholar 

  56. Qiu, D., Junghans, G., Marquardt, K., Kroll, H., Mueller-Eckhardt, C., and Dudeck, J., Discovering objects in a blood recipient information system. Med. Inf. (Lond.) 20(3):209-228, 1995.

    Google Scholar 

  57. Staccini, P., Joubert, M., Quaranta, J. F., Fieschi, D., and Fieschi, M., Modelling health care processes for eliciting user requirements: A way to ling a quality paradigm and clinical information system design. Stud. Health Technol. Inf. 77:51-56, 2000.

    Google Scholar 

  58. Orphanoudakis, S. C., Chronaki, C., and Kostomanolakis, S., I2C: A system for the indexing, storage, and retrieval of medical images by content. Med. Inf. (Lond.) 19(2):109-122, 1994.

    Google Scholar 

  59. Martinez, R., Rozenblit, J. W., Cook, J. F., Chacko, A. K., and Timboe, H. L., Virtual management of radiology examinations in the virtual radiology environment using common object request broker architecture services. J. Digit. Imaging 12(2, Suppl.1):181-185, 1999.

    Google Scholar 

  60. Cook, J. F., Rozenblit, J. W., Chacko, A. K., Martinez, R., and Timboe, H. L., Meta-manager: A requirements analysis. J. Digit. Imaging 12(2, Suppl.1):186-188, 1999.

    Google Scholar 

  61. Ganguly, P., and Ray, P., A methodology for the development of software agent based interoperable telemedicine systems: A tele-electrocardiography perspective. Telemed. J. 6(2):283-294, 2000.

    Google Scholar 

  62. de Champeaux, D., Lea, D., and Faure, P., Object-Oriented System Development, Addison-Wesley, Reading, MA, 1993.

    Google Scholar 

  63. Henderson-Sellers, B., and Edwards, J., Object-oriented systems life cycle. Commun. ACM 33(Sept.):143-159, 1990.

    Google Scholar 

  64. The New Zealand Electronic Medical Record Standard, Electronic Medical Records Standards Subcommittee, February 25, 1998, Retrieved October 1, 2001, from http://www.nzhis.govt.nz/infostandards/emr/SC606.html

  65. Kruchten, P., The Rational Unified Process: An Introduction, Addison-Wesley, Reading, MA, 2000.

    Google Scholar 

  66. Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G., Object-Oriented Software Engineering-A Use Case Driven Approach, Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  67. van der Maas, A. A. F., ter Hofstede, A. H. M., and ten Hoopen, A. J., Requirements for medical modeling languages. J. Am. Med. Inf. Assoc. 8(2):146-162, 2001.

    Google Scholar 

  68. Beeler, G., Developing HL7 Models using UML and Rational Rose, November 7, 1997, Retrieved November 4, 2001, from http://www.hl7.org/library/data-model/Rose tooling/Tutorials/Rose tooling.doc

  69. Pisanelli, D. M., Ferri, F., and Ricci, F. L., An object-oriented tool for the generation and management of multimedia patient folders. Proc. Annu. Symp. Comput. Appl. Med. Care pp. 524-548, 1994.

  70. Krol, M., and Reich, D. L., Object-oriented analysis and design of a health care management information system. J. Med. Syst. 23(2):145-158, 1999.

    Google Scholar 

  71. Bodemann, J., and Hasselbring, W., Interdisciplinary Object-Oriented Domain Analysis for Electronic Medical Records, Retrieved November 3, 2001, from http://citeseer.nj.nec.com/316578.html

  72. Riesco, A. M., Tomas, R. M., and Mira, J. M., A customizable framework for the assessment of therapies in the solution of therapy decision tasks. Artif. Intell. Med. 18:57-82, 2000.

    Google Scholar 

  73. Aluen, M., Arrechedera, H., Matteo, A., and Metzner, C., Developing a web-based object-oriented multimedia medical system. Proc. 32nd Hawaii Int. Conf. Syst. Sci. pp. 1-8, 1999.

  74. Tse, T. H., and Pong, L., An examination of requirements specification languages. Comput. J. 34(2):143-152, 1991.

    Google Scholar 

  75. Miller, G. A., The magic number seven, plus or minus two: Some limits on our capability for processing information. Psychol. Rev. 63:81-97, 1956.

    Google Scholar 

  76. Lobach, D. F., Gadd, C. S., and Hales, J. W., Structuring clinical practice guidelines in a relational database model for decision support on the Internet. Proc. AMIA Annu. Fall Symp. pp. 158-162, 1997.

  77. Hoffman, K. J., Demystifying mental health information needs through integrated definition (IDEF) activity and data modeling. Proc. AMIA Annu. Fall Symp. pp. 111-115, 1997.

  78. Zucker, J., Chase, H., Molholt, P., Soliz, E., and Kahn, R. M., Conceptual modeling techniques for online curriculum design. Proc. AMIA Annu. Fall Symp. p. 1022, 1997.

  79. Farmer, J., Claims and Eligibility Service for HIPAA (CAESH), December 20, 2000, Retrieved November 12, 2001, from http://www.omg.org/docs/corbamed/01-01-01.txt

  80. Nadkarni, P. M., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., and Miller, P., Organization of heterogeneous scientific data using theEAV/CR representation. J. Am. Med. Inf. Assoc. 6(6):478-493, 1999.

    Google Scholar 

  81. Lemaitre, D., Sauquet, D., Fofol, I., Tanguy, L., Jean, F.-C., and Degoulet, P., Legacy systems: Managing evolution through integration in a distributed and object-oriented computing environment. Proc. Annu. Symp. Comput. Appl. Med. Care pp. 132-136, 1995.

  82. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and Angel, S., A Pattern Language, Oxford University Press, New York, 1977.

    Google Scholar 

  83. Alexander, C., The Timeless Way of Building, Oxford University Press, New York, 1979.

    Google Scholar 

  84. Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, Reading, MA, 1997.

    Google Scholar 

  85. Rising, L., Design patterns: Elements of reusable architectures. In Rising, L. (ed.), The Patterns Handbook: Techniques, Strategies and Applications, Cambridge University Press, Cambridge, U.K., pp. 9-13, 1998.

    Google Scholar 

  86. Corfman, R., An overview of patterns. In Rising, L. (ed.), The Patterns Handbook: Techniques, Strategies and Applications, Cambridge University Press, Cambridge, U.K., pp. 19-30, 1998.

    Google Scholar 

  87. Schmidt, D. C., Experience using design patterns to develop reusable object-oriented communication software. Commun. ACM 38(10), 65-74, 1995.

    Google Scholar 

  88. Boye, N., and Veirum, N. E., Ontology-based, medical domain-specific, use-case driven, EMRs for use in clinical quality assurance and passive decision support. Stud. Health Technol. Inf. 70:36-38, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, V. The Application of the Unified Modeling Language in Object-Oriented Analysis of Healthcare Information Systems. Journal of Medical Systems 26, 383–397 (2002). https://doi.org/10.1023/A:1016449031753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016449031753

Navigation