Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, 1993.
Google Scholar
Quinlan, J. R., Induction of decision trees. Mach. Learn. 1:81-106, 1986.
Google Scholar
Quinlan, J. R., Simplifying decision trees, Int. J. Man-Mach. Stud. 27:221-234, 1987.
Google Scholar
Shannon, C., and Weaver, W., The Mathematical Theory of Communication, University of Illinois Press, USA, 1949.
Google Scholar
Breiman, L., Friedman, J. H., Olsen, R. A., and Stone, C. J., Classification and Regression Trees, Wadsworth, USA, 1984.
Paterson, A., and Niblett, T. B., ACLS Manual, Intelligent Terminals Ltd., Edinburgh, 1982.
Google Scholar
Zorman, M., Podgorelec, V., Kokol, P., Peterson, M., and Lane, J., Decision tree's induction strategies evaluated on a hard real world problem. Proc. 13th IEEE Symp. Comp.-Based Med. Syst. (CBMS-2000) pp. 19-24, 2000.
Zorman, M., Hleb S., and Sprogar, M., Advanced tool for building decision trees MtDecit 2.0. Proc. Int. Conf. Artif. Intellig. (ICAI-99), 1999.
Tou, J. T., and Gonzalez, R. C., Pattern Recognition Principles, Addison-Wesley, Reading, MA, 1974.
Google Scholar
Murthy, K. V. S., On Growing Better Decision Trees from Data, PhD dissertation, Johns Hopkins University, Baltimore, MD, 1997.
Google Scholar
Neapolitan, R., and Naimipour, K., Foundations of Algorithms, D.C. Heath and Company, Lexington, MA, 1996.
Google Scholar
Heath, D., Kasif, S., and Salzberg, S., k-DT: A multi-tree learning method. Proc. Second Int. Workshop Multistrategy Learn. pp. 138-149, 1993.
Heath, D., Kasif, S., and Salzberg, S., Learning oblique decision trees. Proc. Thirteenth Int. Joint Conf. Artif. Intellig. (IJCAI-93) pp. 1002-1007, 1993.
Rich, E., and Knight, K., Artificial Intelligence (2nd edn.), McGraw Hill, New York, 1991.
Google Scholar
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., Optimization by simulated annealing. Science 220:4598, 1983.
Google Scholar
Utgoff, P. E., Incremental induction of decision trees. Mach. Learn. 4(2):161-186, 1989.
Google Scholar
Crawford, S., Extensions to the CART algorithm. Int. J. Man-Mach. Stud. 31(2):197-217, 1989.
Google Scholar
Dietterich, T. G., and Kong, E. B., Machine learning bias, statistical bias and statistical variance of decision tree algorithms. Technical Report, Oregon State University, 1995.
Ho, T. K., The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intellig. 20(8):832-844, 1998.
Google Scholar
Podgorelec, V., and Kokol, P., Evolutionary decision forests-decision making with multiple evolutionary constructed decision trees, Problems in Applied Mathematics and Computational Intelligence, pp. 97-103, WSES Press, 2001.
Shlien, S., Multiple binary decision tree classifiers. Pattern Recogn. Lett. 23(7):757-763, 1992.
Google Scholar
Utgoff, P. E., Perceptron trees: A case study in hybrid concept representations. Connect. Science 1:377-391, 1989.
Google Scholar
Craven, M.W., and Shavlik, J.W., Extracting tree-structured representations of trained networks. In Advances in Neural Information Processing Systems, Vol. 8, MIT Press, Cambridge, MA, 1996.
Google Scholar
Zorman, M., Kokol, P., and Podgorelec, V., Medical decision making supported by hybrid decision trees. Proc. ICSC Symp. Intellig. Syst. Appl. (ISA-2000) ICSC Academic Press, 2000.
Banerjee, A., Initializing neural networks using decision trees. Proc. Int. Workshop Comput. Learn. Nat. Learn. Syst. pp. 3-15, 1994.
Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning, AddisonWesley, Reading, MA, 1989.
Google Scholar
Nikolaev, N., and Slavov, V., Inductive genetic programming with decision trees. Intellig. Data Anal. Int. J. 2(1):31-44, 1998.
Google Scholar
Podgorelec, V., and Kokol, P., Induction f medical decision trees with genetic algorithms. Proc. Int. ICSC Congr. Comput. Intellig. Methods Appl. (CIMA 1999) 1999.
Cantu-Paz, E., and Kamath, C., Using evolutionary algorithms to induce oblique decision trees. Proc. Genet. Evol. Comput. Conf. (GECCO-2000) pp. 1053-1060, 2000.
Podgorelec, V., and Kokol, P., Towards more optimal medical diagnosing with evolutionary algorithms. J. Med. Syst. 25(3):195-219, 2001.
Google Scholar
Sprogar, M., Kokol, P., Hleb, S., Podgorelec, V., and Zorman, M., Vector decision trees. Intellig. Data Anal. 4(3/4):305-321, 2000.
Google Scholar
Podgorelec, V., Intelligent Systems Design and Knowledge Discovery With Automatic Programming, PhD thesis, University of Maribor, Oct. 2001.
Cremilleux, B., and Robert, C., A theoretical framework for decision trees in uncertain domains: Application to medical data sets. In Lecture Notes in Artificial Intelligence, Vol. 1211, pp. 145-156, Springer-Verlag, 1997.
Google Scholar
Kokol, P., Zorman, M., Stiglic, M. M., and Malcic, I., The limitations of decision trees and automatic learning in real world medical decision making. Proc. 9thWorld Congr. Med. Inform. (MEDINFO-98) Vol. 52, pp. 529-533, 1998.
Google Scholar
Tsien, C. L., Fraser, H. S. F., Long, W. J., and Kennedy, R. L., Using classification tree and logistic regression methods to diagnose myocardial infarction. Proc. 9th World Congr. Med. Inform. (MEDINFO-98) Vol. 52, pp. 493-497, 1998.
Google Scholar
Babic, S. H., Kokol, P., and Stiglic, M. M., Fuzzy decision trees in the support of breastfeeding. Proc. 13th IEEE Symp. Comp.-Based Med. Syst. (CBMS-2000) pp. 7-11, 2000.
Jones, J. K., The role of data mining technology in the identification of signals of possible adverse drug reactions: Value and limitations. Curr. Ther. Res.-Clin. Exp. 62(9):664-672, 2001.
Google Scholar
Ohno-Machado, L., Lacson, R., and Massad, E., Decision trees and fuzzy logic: A comparison of models for the selection of measles vaccination strategies in Brazil. J. Am. Med. Inform. Assoc. (Suppl.):625-629, September 2000.
Dantchev, N., Therapeutic decision frees in psychiatry. Encephale-Revue De Psychiatrie Clinique Biologique Et Therapeutique 22(3):205-214, 1996.
Google Scholar
Gambhir, S. S., Decision analysis in nuclear medicine. J. Nucl. Med. 40(9):1570-1581, 1999.
Google Scholar
Tsien, C. L., Kohane, I. S., and McIntosh, N., Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit. Artif. Intellig. Med. 19(3):189-202, 2000.
Google Scholar
Bonner, G., Decision making for health care professionals: Use of decision trees within the community mental health setting. J. Adv. Nurs. 35:349-356, 2001.
Google Scholar
Letourneau, S., and Jensen, L., Impact of a decision tree on chronic wound care. J. Wound Ostomy Continence Nurs. 25:240-247, 1998.
Google Scholar
Sanders, G. D., Hagerty, C. G., Sonnenberg, F. A., Hlatky, M. A., and Owens, D. K., Distributed decision support using a web-based interface: Prevention of sudden cardiac death, Med. Decision Making 19(2):157-166, 2000.
Google Scholar
Sims, C. J., Meyn, L., Caruana, R., Rao, R. B., Mitchell, T., and Krohn, M., Predicting cesarean delivery with decision tree models. Am. J. Obstet. Gynecol. 183:1198-1206, 2000.
Google Scholar