Skip to main content
Log in

On crack arrest in ceramic / metal assemblies

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Brittle parts of ceramic/metal assemblies are subjected to a residual stress field generated by the fabrication. During that process, cracks are initiated and the key question is whether they propagate through the whole brittle part. The use of classical probabilistic fracture models applied to the ceramic (i.e., based on a weakest link hypothesis), allow one to conclude that cracks are likely to initiate after the manufacturing process. Consequently, a crack arrest model is proposed, based on a random toughness distribution. Applied to micro-hardness experiments, the statistical parameters are identified, and the predictive capacity of the model is analyzed. The model is then used to study the reliability of ceramic/metal assemblies during the fabrication stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aveston, J. and Kelly, A. (1973). Theory of multiple fracture in fibrous composites, Journal of Mat. Sci. 8, 352–362.

    Google Scholar 

  • Barsoum, S.R. (1976). On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Numer. Meth. Eng. 10, 25–37.

    Google Scholar 

  • Bueckner, H.F. (1970). A novel principle for the computation of stress intensity factors. Zeitschrift für Angewandte Mathematik und Mechanik 50, 529–546.

    Google Scholar 

  • Bui, H. D. and Taheri, S. (1989). La singularité épine dans les bi-matériaux en thermo-élasticité. C.R. Acad. Sci. Paris 309, 1527–1533.

    Google Scholar 

  • Charles, Y. (2002). Identification d'un mode de vieillissement dans un assemblage céramique-métal, Ph.D. dissertation, Ecole Normale Supérieure de Cachan, France, (in French).

    Google Scholar 

  • Chudnowsky, A. and Kunin, B. (1987). A probabilistic model of brittle crack formation. J. Appl. Phys. 62, 4124.

    Google Scholar 

  • Davis, D.G.S. (1973). The statistical approach to engineering design in ceramics. Proc. Brit. Ceram. Soc. 22, 429–452.

    Google Scholar 

  • Desmorat, R. and Leckie, F.A. (1998). Singularities in bi-materials: parametric study of an isotropic/anisotropic joint. Eur. J. Mech. A/Solids 17, 33–52.

    Google Scholar 

  • Duval, J. (2000). Personal Communication.

  • Fell, P. (1994). Active metal braze alloys for joining metals to ceramics. Advances in Joining Technology 26 Oct., The British Association for Brazing and Soldering.

  • Fett, T. and Munz, D. (1994). Lifetime Prediction for Ceramic Materials under Constant and Cyclic Load, Life Prediction Methodologies and Data for Ceramic Materials, ASTM STP 1201, (edited by C.R. Brinkman and S.F. Duffy) Am. Soc. Test. Mat., Philadelphia (USA), 161–174.

    Google Scholar 

  • Freudenthal, A.M. (1968). Statistical Approach to Brittle Fracture. In: Fracture (edited by H. Liebowitz) Academic Press, New York (USA), 2, 591–619.

    Google Scholar 

  • Griffith, A.A. (1921). The phenomenon of rupture and flow in solids. Trans. Roy. Soc. London A221, 163–198.

    Google Scholar 

  • Hild, F. and Marquis, D. (1992). A statistical approach to the rupture of brittle materials. Eur. J. Mech. A/Solids 11, 753–765.

    Google Scholar 

  • Irwin, G.R. (1957). Analysis of the stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364.

    Google Scholar 

  • Jayatilaka, A. de S. and Trustrum, K. (1977). Statistical approach to brittle fracture J. Mat. Sci. 12, 1426–1430

    Google Scholar 

  • Jeulin, D. (1994). Fracture statistics models and crack propagation in random media. Appl. Mech. Rev. 47, 141–150.

    Google Scholar 

  • Kara-Slimane A. (1996). Assemblages métal-céramiques (oxydes, nitrures) par métallisation brasage; influence des interactions chimiques dans les zones interstitielles. Ph.D. dissertation, Ecole Centrale de Lyon, France, (in French).

    Google Scholar 

  • castem_English.html.

  • Laval, P. (1995). Etude théorique et expérimentale de l'indentation des matériaux élastoplatiques homogènes ou revêtus, Ph.D. dissertation, Ecole Nationale Supérieure des Mines de Paris, France, (in French).

    Google Scholar 

  • Lei, Y., O'Dowd, N.P., Busso, E.P. and Webster, G.A. (1998). Weibull Stress Solutions for 2-D Cracks in Elastic and Elastic-Plastic Materials. International Journal of Fracture 89, 245–268.

    Google Scholar 

  • Lemaitre, J. and Chaboche, J.-L. (1988). Mécanique des matériaux solides, Dunod, Paris, France. English translation: Lemaitre, J. and Chaboche, J.-L. (1990). Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lemaitre, P. and Piller, R. (1988). Comparison of the fracture toughness of alumina by three different methods. J. Mat. Sci. Lett. 7, 772–774.

    Google Scholar 

  • Lovato, G. (1995). Rhéologie des joints brasés: étude expérimentale et détermination par méthode inverse, Ph.D. dissertation, Ecole Nationale Supérieure des Mines de Paris, France, (in French).

    Google Scholar 

  • Matheron, G. (1975). Random Set and Integral Geometry, J. Wiley and Sons, New York, USA.

    Google Scholar 

  • Murakami, Y. (1987). Stress Intensity Factors Handbook, Pergamon Press, Oxford, UK.

    Google Scholar 

  • Palmqvist, S. (1957). Jernkontorets Ann. 141, 300–307. See also: Niihara, K., Morena, R. and Hasselman, D.P.H. (1982). Evaluation of K1c of brittle solids by the indentation method with low crack-to-indent ratios. J. Mat. Science Lett. 1, 13–16.

    Google Scholar 

  • Ponton, C.B. and Rawling, R.D. (1989a). Vickers indentation fracture toughness test – Part 1. Review of literature and formulation of standardised indentation toughness equation. Mat. Sci. Tech. 5, 865–872.

    Google Scholar 

  • Ponton, C.B. and Rawling, R.D. (1989b). Vickers indentation fracture toughness Test – Part 2. Application and critical evaluation of standardised indentation toughness equation. Mat. Sci. Tech. 5, 961–976.

    Google Scholar 

  • Rice, J.R. (1972). Some remarks on elastic crack tip stress fields. Int. J. Solids Struct. 8, 751–758.

    Google Scholar 

  • Riou, P., Denoual, C. and Cottenot, C.E. (1998). Visualisation of the damage dvolution in impacted silicon carbide ceramic. Int. J. Impact Eng. 21, 225–235.

    Google Scholar 

  • Schmauder, S. (1989). Influence of elastic anisotropy on the edge problem. Metal-Ceramic Interfaces 4, 413–419.

    Google Scholar 

  • Spanier, J. and Oldham, K.B. (1987). The incomplete beta function B(υ,µ, x). Atlas of Functions, Hemisphere Ed., Washington DC, USA, chap. 58, 573–580.

  • Suo, Z. (1990). Singularities, interfaces and cracks in dissimilar media. Proc. Roy. Soc. London A427, 331–358.

    Google Scholar 

  • Weibull, W. (1939). A statistical theory of the strength of materials. Proc. Roy. Swed. Ins. Eng. Research 151, 1–45

    Google Scholar 

  • Williams, M.L. (1959). The stress around a fault or crack in dissimilar media. Bull. Seismol. Soc. Am. 49, 199–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Hild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, Y., Hild, F. On crack arrest in ceramic / metal assemblies. International Journal of Fracture 115, 251–272 (2002). https://doi.org/10.1023/A:1016399912031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016399912031

Navigation