Skip to main content
Log in

Formation of the Intensity Distribution in Laser Beams due to Difraction on Structures of Small-Size Optical Inhomogeneities

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The possibilities of formation of the intensity distribution in laser beams due to diffraction of radiation on spatial structures of small-size optical inhomogeneities are considered. Computer modeling of beam profile formation by plates-apodizers containing two-dimensional structures of discrete amplitude or phase scatterers is performed. The results presented testify to the prospects of optical elements with scattering centers for laser beam shaping in UV, visible, and IR spectral ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Balluder, P. Blair, M. Taghizaden, et al., “Diffraction optics for high-power beam shaping applications,” in: Digest of the European Conference on Lasers and Electro-Optics, 10-15 Sept., 2000, Nice, France (2000), p. 358.

  2. R. Mossudi, D. Jeannette, and M. Piche, “Modal control of solid-state lasers with holographic gratings,” ” in: Digest of the European Conference on Lasers and Electro-Optics, 10-15 Sept., 2000, Nice, France (2000), p. 289.

  3. A. V. Volkov, V. V. Kotlyar, O. V. Moiseev, et al., “Binary diffraction optical element, focusing a Gaussian beam into a longitudinal segment,” Opt. Spectrosk., 89, p. 347 (2000).

    Google Scholar 

  4. K. Sueda, K. Tsubakotomo, M. Nakatsuka, et al., “Design of multi-segmented kinoform phase plate with optimized segmentation,” Annual Progress Report of ILE, Osaka, Japan (2000), p. 67.

  5. N. B. Baranova, B. Ya. Zel'dovich, N. E. Bykovskii, and Yu. V. Senatskii, “Diffraction and self-focusing of radiation in the amplifier of high-power light pulses,” Kvantovaya Élektron., 1, 2435 (1974).

    Google Scholar 

  6. S. Desilvestri, V. Magni, O. Svelto, et al., IEEE J. Quantum Electron., 26, p. 1500 (1990).

    Google Scholar 

  7. Yu. Zavalov, L. Kaptsov, A. Kudryashov, et al., Quantum Electron., 29, p. 339 (1999).

    Google Scholar 

  8. Yu. V. Senatsky, M. V. Pyatakhin, L. M. Vinogradsky, et al., “Apodizers for obtaining single mode generation in lasers,” in: Program and Summaries of the Int. Conf. “Laser and Laser-Information Technologies,” June 22-26, 2001, Vladimir-Suzdal, Russia (2001), p. 115.

  9. S. Volyanyuk, V. Bezrodnyi, and E. Tikhonov, Kvantovaya Élektron., 31, p. 456 (2001).

    Google Scholar 

  10. Van Wonterghen, J. Murray, and J. Campbell, Appl. Opt., 35, p. 4932 (1997).

    Google Scholar 

  11. M. Summers, W. Hagen, and R. Boyd, “Scattering apodizer for laser beams,” US Patent N 4537475, 27 Aug. 1985.

  12. N. Rizvi, D. Rodkiss, and C. Danson “Apodizer development,” Rutherford Appleton Lab. Annual Report to the Laser Facility Committee RAL-87-041 (1987), p. 113.

  13. N. I. Potapova and A. D. Tsvetkov, “Fresnel diffraction at glass apodizing diaphragms with super-Gaussian transmission function,” Kvantovaya Élektron., 15, p. 2057 (1988).

    Google Scholar 

  14. N. I. Potapova and A. D. Tsvetkov, “Apodization of laser radiation with phase diaphragms,” Kvantovaya Élektron., 19, p. 460 (1992).

    Google Scholar 

  15. S. G. Lukishova, I. K. Krasyuk, P. P. Pashinin, and A. M. Prokhorov, “Apodization of light beams as a method of increasing the brightness of neodymium glass laser installations,” Proc. Of the Institute of General Physics [in Russian], Nauka, Moscow (1987), Vol. 7, p. 92.

    Google Scholar 

  16. A. Mak, L. Soms, and V. Yashin, Neodymium Glass Lasers [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  17. I. Zubarev, M. Pyatakhin, and Yu. Senatsky, “Method of soft diaphragm formation,” RF Patent No. 2140695, April 24, 1998.

  18. L. Vinogradsky, Yu. Senatsky, M. Pyatakhin, et al. “Development of the nonlinear optical element for light beam apodization and large aperture laser amplifier decoupling,” Preprint No. 53 of the P. N. Lebedev Physical Institute, Moscow (1998); Proc. SPIE, 3683, p. 186 (1998).

  19. L. Vinogradsky, Yu. Senatsky, M. Pyatakhin, et al., “Soft diaphragms for apodization of powerful laser beams,” Proc. SPIE, 3889, p. 849 (2000).

    Google Scholar 

  20. M. V. Pyatakhin and A. F. Suchkov, Spatiotemporal Characteristics of Laser Emission, Nova Science, New York (1994).

    Google Scholar 

  21. C. Bohren and D. Hufman, Absorption and Scattering of Light by Small Particles, Wiley, New York (1983).

    Google Scholar 

  22. V. N. Alekseev, “Laser locator based on the intracavity scanning of radiation,” Opt. Zh., 68, p. 43 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyatakhin, M.V., Senatsky, Y.V. Formation of the Intensity Distribution in Laser Beams due to Difraction on Structures of Small-Size Optical Inhomogeneities. Journal of Russian Laser Research 23, 332–346 (2002). https://doi.org/10.1023/A:1016390226782

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016390226782

Navigation