Skip to main content
Log in

A Smoothness Theorem for Invariant Fiber Bundles

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Invariant fiber bundles are the generalization of invariant manifolds from discrete dynamical systems (mappings) to non-autonomous difference equations. In this paper we present a self-contained proof of their existence and smoothness. Our main result generalizes the so-called “Hadamard–Perron-Theorem” for time-dependent families of pseudo-hyperbolic mappings from the finite-dimensional invertible to the infinite-dimensional non-invertible case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abraham, R. H., Marsden, J. E., and Ratiu, T. (1988). Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences, Vol. 75, Springer-Verlag, Berlin/Heidelberg/ New York.

    Google Scholar 

  2. Appell, J., and Zabreijko, P. P. (1990). Nonlinear Superposition Operators, Cambridge University Press, Cambridge.

    Google Scholar 

  3. Aulbach, B. (1998). The fundamental existence theorem on invariant fiber bundles. J. Differ. Equations Appl. 3, 501–537.

    Google Scholar 

  4. Aulbach, B., and Garay, B. M. (1994). Discretization of semilinear differential equations with an exponential dichotomy. Comput. Math. Appl. 28, 23–35.

    Google Scholar 

  5. Aulbach, B., Van Minh, N., and Zabreiko, P. P. (1994). The concept of spectral dichotomy for linear difference equations. J. Math. Anal. Appl. 185, 275–287.

    Google Scholar 

  6. Aulbach, B., and Pötzsche, C. Invariant manifolds with asymptotic phase for nonautonomous difference equations. Comput. Math. Appl., to appear.

  7. Aulbach, B., and Wanner, T. Invariant foliations and decoupling of nonautonomous difference equations. J. Differ. Equations Appl., to appear.

  8. Castaňeda, N., and Rosa, R. (1996). Optimal estimates for the uncoupling of differential equations. J. Dynam. Differential Equations 8(1), 103–139.

    Google Scholar 

  9. Chow, S.-N., and Hale, J. K. (1996) Methods of Bifurcation Theory, Grundlehren der mathematischen Wissenschaften, Vol. 251, Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  10. Chow, S.-N., and Lu, K. (1988). Ck centre unstable manifolds, Proceedings of the Royal Society Edinburgh, Section A, Vol. 108, Nos. 3/4, pp. 303–320.

    Google Scholar 

  11. ElBialy, M. S. (1999). On pseudo-stable and pseudo-unstable manifolds for maps. J. Math. Anal. Appl. 232, 229–258.

    Google Scholar 

  12. Hilger, S. (1992). Smoothness of invariant manifolds. J. Funct. Anal. 106(1), 95–129.

    Google Scholar 

  13. Hirsch, M. W., Pugh, C. C., and Shub, M. (1977). Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  14. Katok, A., and Hasselblatt, B. (1995). Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54, Cambridge University Press, Cambridge.

    Google Scholar 

  15. Keller, S. (1999). Asymptotisches Verhalten invarianter Faserbündel bei Diskretisierung und Mittelwertbildung im Rahmen der Analysis auf Zeitskalen, Dissertation, Universität Augsburg.

  16. Lang, S. (1993). Real and Functional Analysis, Graduate Texts in Mathematics, Vol. 142, Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  17. Papaschinopoulos, G. (1988). On the summable manifold for discrete systems. Math. Japonica 33(3), 457–468.

    Google Scholar 

  18. Papaschinopoulos, G. (1990). Linearization near the summable manifold for discrete systems. Stud. Scient. Math. Hungarica 25, 275–289.

    Google Scholar 

  19. Schinas, J. (1974). Stability and conditional stability of time-dependent difference equations in Banach spaces. J. Inst. Maths Applics 14, 335–346.

    Google Scholar 

  20. Shub, M. (1987). Global Stability of Dynamical Systems, Springer-Verlag, Berlin/Heidelberg/ New York.

    Google Scholar 

  21. Siegmund, S. (1996). On the Differentiability of Integral Manifolds, (in german) Diploma thesis, Universität Augsburg.

  22. Siegmund, S. (1999). Spectral Theory, Smooth Foliations and Normal Forms for Differential Equations of Carathéodory-Type, (in german) Ph.D. Dissertation, Universität Augsburg.

  23. Vanderbauwhede, A. (1989). Center manifolds, normal forms and elementary bifurcations. In Kirchgraber, U., and Walther, H.-O. (eds.), Dynamics Reported, B. G. Teubner, Stuttgart, Vol. 2, pp. 89–169.

  24. Vanderbauwhede, A., and Van Gils, S. A. (1987). Center manifolds and contractions on a scale of Banach spaces. J. Funct. Anal. 72, 209–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulbach, B., Pötzsche, C. & Siegmund, S. A Smoothness Theorem for Invariant Fiber Bundles. Journal of Dynamics and Differential Equations 14, 519–547 (2002). https://doi.org/10.1023/A:1016383031231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016383031231

Navigation