Skip to main content
Log in

The Hyaluronan Receptor RHAMM/IHABP in Astrocytoma Cells: Expression of a Tumor-specific Variant and Association with Microtubules

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Hyaluronan binding to its cellular receptors CD44 and ICAM-1 appears to enhance the malignant behavior of tumors, including astrocytomas. RHAMM/IHABP, another hyaluronan receptor, has been identified in breast carcinoma cells, but its presence in astrocytomas is yet undetermined. Herein, we report that a monoclonal antibody against plectin (a cytoskeletal protein linker) recognizes on Western blots of U-373 MG glioblastoma cells, a 300-kDa band corresponding to plectin and two bands of 86 and 70 kDa. cDNA cloning and Northern blotting reveals that these two bands represent isoforms of RHAMM/IHABP. Sequence comparisons suggest that the plectin monoclonal antibody recognizes RHAMM/IHABP because this protein and plectin share short peptide sequences of similar primary and secondary structure. Western blotting demonstrates that most human astrocytoma tissues and cell lines express the 86- and 70-kDa isoforms of RHAMM/IHABP. Interestingly, the 70-kDa variant is undetectable in normal brain tissues and in primary cultures of astrocytes suggesting that its expression is tumor-specific. Transfection experiments with epitope-tagged RHAMM/IHABP cDNA established that RHAMM/IHABP associates with microtubules in astrocytoma cells, while in normal astrocytes it either co-localizes with microtubules or has a diffuse cytoplasmic distribution. This suggests that RHAMM/IHABP has the capacity to bind to microtubules in normal and transformed astrocytes, and that neoplasia may favor this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee JY, Spicer AP: Hyaluronan: a multifunctional, megadalton, stealth molecule. Curr Opin Cell Biol 12: 581–586, 2000

    Google Scholar 

  2. Baltuch GH, de Tribolet N, Van Meir EG: Expression of the CD44 adhesion molecule in tumours of the central and peripheral nervous system. J Neuro-Oncol 26: 191–198, 1995

    Google Scholar 

  3. Gingras MC, Roussel E, Bruner JM, Branch CD, Moser RP: Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol 57: 143–153, 1995

    Google Scholar 

  4. Kuppner MC, Van Meir E, Gauthier T, Hamou MF, de Tribolet N: Differential expression of the CD44 molecule in human brain tumours. Int J Cancer 50: 572–577, 1992

    Google Scholar 

  5. Maenpaa A, Kovanen PE, Paetau A, Jaaskelainen J, Timonen T: Lymphocyte adhesion molecule ligands and extracellular matrix proteins in gliomas and normal brain: expression of VCAM-1 in gliomas. Acta Neuropathol (Berl) 94: 216–225, 1997

    Google Scholar 

  6. Vitolo D, Paradiso P, Uccini S, Ruco LP, Baroni CD: Expression of adhesion molecules and extracellular matrix proteins in glioblastomas: relation to angiogenesis and spread. Histopathology 28: 521–528, 1996

    Google Scholar 

  7. Delpech B, Maingonnat C, Girard N, Chauzy C, Maunoury R, Olivier A, Tayot J, Creissard P: Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma. Eur J Cancer 29A: 1012–1017, 1993

    Google Scholar 

  8. Steck PA, Moser RP, Bruner JM, Liang L, Freidman AN, Hwang TL, Yung WK: Altered expression and distribution of heparan sulfate proteoglycans in human gliomas. Cancer Res 49: 2096–2103, 1989

    Google Scholar 

  9. Koochekpour S, Pilkington GJ, Merzak A: Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int J Cancer 63: 450–454, 1995

    Google Scholar 

  10. Radotra B, McCormick D: CD44 is involved in migration but not spreading of astrocytoma cells in vitro. Anticancer Res 17: 945–949, 1997

    Google Scholar 

  11. Radotra B, McCormick D: Glioma invasion in vitro is mediated by CD44–hyaluronan interactions. J Pathol 181: 434–438, 1997

    Google Scholar 

  12. Wiranowska M, Tresser N, Saporta S: The effect of interferon and anti-CD44 antibody on mouse glioma invasiveness in vitro. Anticancer Res 18: 3331–3338, 1998

    Google Scholar 

  13. Gunia S, Hussein S, Radu DL, Putz KM, Breyer R, Hecker H, Samii M, Walter GF, Stan AC: CD44s-targeted treatment with monoclonal antibody blocks intracerebral invasion and growth of 9L gliosarcoma. Clin Exp Metastasis 17: 221–230, 1999

    Google Scholar 

  14. Breyer R, Hussein S, Radu DL, Putz KM, Gunia S, Hecker H, Samii M, Walter GF, Stan AC: Disruption of intracerebral progression of C6 rat glioblastoma by in vivo treatment with anti-CD44 monoclonal antibody. J Neurosurg 92: 140–149, 2000

    Google Scholar 

  15. Hardwick C, Hoare K, Owens R, Hohn HP, Hook M, Moore D, Cripps V, Austen L, Nance DM, Turley EA: Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol 117: 1343–1350, 1992

    Google Scholar 

  16. Entwistle J, Zhang S, Yang B, Wong C, Li Q, Hall CL, Mowat M, Greenberg AH, Turley EA: Characterization of the murine gene encoding the hyaluronan receptor RHAMM. Gene 1995 163: 233–238, 1995

    Google Scholar 

  17. Turley EA: Hyaluronan and cell locomotion. Cancer Rev Metast 11: 21–30, 1992

    Google Scholar 

  18. Hofmann M, Fieber C, Assmann V, Gottlicher M, Sleeman J, Plug R, Howells N, von Stein O, Ponta H, Herrlich P: Identification of IHABP, a 95 kDa intracellular hyaluronate binding protein. J Cell Sci 111: 1673–1684, 1998

    Google Scholar 

  19. Assmann V, Jenkinson D, Marshall JF, Hart IR: The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J Cell Sci 112: 3943–3954, 1999

    Google Scholar 

  20. Assmann V, Marshall JF, Fieber C, Hofmann M, Hart IR: The human hyaluronan receptor RHAMM is expressed as an intracellular protein in breast cancer cells. J Cell Sci 111: 1685–1694, 1998

    Google Scholar 

  21. Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, Lange LA, Wang C, Curpen GD, Savani RC, Greenberg AH, Turley EA: Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell 82: 19–26, 1995

    Google Scholar 

  22. McCarthy KD, de Vellis J: Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85: 890–902, 1980

    Google Scholar 

  23. Kleihues P, Burger PC, Scheithauer BW: The new WHO classification of brain tumors. Brain Pathol 3: 255–268, 1993

    Google Scholar 

  24. Yang HY, Lieska N, Goldman AE, Goldman RD: A300,000–mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells. J Cell Biol 100: 620–631, 1985

    Google Scholar 

  25. Avrameas S, Ternynck T: The cross-linking of proteins with glutaraldehyde and its use for the preparation of immunoadsorbents. Immunochemistry 6: 53–66, 1969

    Google Scholar 

  26. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of proteins using bicinchoninic acid. Anal Biochem 150: 76–85, 1985

    Google Scholar 

  27. Sultana S, Zhou R, Sadagopan MS, Skalli O: Effects of growth factors and basement membrane proteins on the phenotype of U-373MGglioblastoma cells as determined by the expression of intermediate filament proteins. Am J Pathol 153: 1157–1168, 1998

    Google Scholar 

  28. Laemmli UK: Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227: 680–685, 1974

    Google Scholar 

  29. Towbin M, Staehelin Y, Gordon J: Electrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354, 1979

    Google Scholar 

  30. Johnstone A, Thorpe R: Immunochemistry in Practice, 3rd edn, Blackwell Science, Oxford, 1996

    Google Scholar 

  31. Olmsted JB: Affinity purification of antibodies from diazotized paper blots of heterogenous protein samples. J Biol Chem 256: 11955–11957, 1981

    Google Scholar 

  32. Lieska N, Yang HY, Goldman RD: Purification of the 300K intermediate filament-associated protein and its in vitro recombination with intermediate filaments. J Cell Biol 101: 802–813, 1985

    Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning, a Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory Press, New York, 1989

    Google Scholar 

  34. D'alessio JM, Bebee R, Hartley JL, Noon MC, Polayes M: Lambda Zip Lox: automatic subcloning of cDNA. Focus 14: 76–79, 1992

    Google Scholar 

  35. Young RA, Davis RW: Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 80: 1194–1198, 1985

    Google Scholar 

  36. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1997

    Google Scholar 

  37. Zhou R, Skalli O: TGF-α differentially regulates GFAP, vimentin and nestin gene expression in U-373MG glioblastoma cells. Correlation with cell shape and motility. Exp Cell Res 254: 269–278, 2000

    Google Scholar 

  38. Wiche G: Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111: 2477–2486, 1998

    Google Scholar 

  39. Errante LD, Wiche G, Shaw G: Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system. J Neurosci Res 37: 515–528, 1994

    Google Scholar 

  40. Foisner R, Bohn W, Mannweiler K, Wiche G: Distribution and ultrastructure of plectin arrays in subclones of rat glioma C6 cells differing in intermediate filament protein (vimentin) expression. J Struct Biol 115: 304–317, 1995

    Google Scholar 

  41. Lie AA, Schroder R, Blumcke I, Magin TM, Wiestler OD, Elger CE: Plectin in the human central nervous system: predominant expression at pia/glia and endothelia/glia interfaces. Acta Neuropathol (Berl) 96: 215–221, 1998

    Google Scholar 

  42. Clubb BH, Chou YH, Herrmann H, Svitkina TM, Borisy GG, Goldman RD: The 300–kDa intermediate filament-associated protein (IFAP300) is a hamster plectin ortholog. Biochem Biophys Res Commun 273: 183–187, 2000

    Google Scholar 

  43. Weitzer G, Wiche G: Plectin from bovine lenses. Chemical properties, structural analysis and initial identification of interaction partners. Eur J Biochem 169: 41–52, 1987

    Google Scholar 

  44. Wang C, Entwistle J, Hou G, Turley EA: The characterization of a human RHAMM cDNA: conservation of the hyaluronan-binding domains. Gene 174: 299–306, 1996

    Google Scholar 

  45. Liu CG, Maercker C, Castanon MJ, Hauptmann R, Wiche G: Human plectin: organization of the gene, sequence analysis, and chromosome localization (8q24). Proc Natl Acad Sci USA 93: 4278–4283, 1996

    Google Scholar 

  46. Spicer AP, Roller ML, Camper SA, McPherson JD, Wasmuth JJ, Hakim S, Wang C, Turley EA, McDonald JA: The human and mouse receptors for hyaluronan-mediated motility, RHAMM, genes (HMMR) map to human chromosome 5q33.2–qter and mouse chromosome 11. Genomics 30: 115–117, 1995

    Google Scholar 

  47. Wechsler-Reya R, Scott MP: The developmental biology of brain tumors. Annu Rev Neurosci 24: 385–428, 2001

    Google Scholar 

  48. Hall CL, Wang C, Lange LA, Turley EA: Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol 126: 575–588, 1994

    Google Scholar 

  49. Shouthern JA, Young DF, Heaney F, Baumgartner W, Randall RE: Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J Gen Virol 72: 1551–1557, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, R., Wu, X. & Skalli, O. The Hyaluronan Receptor RHAMM/IHABP in Astrocytoma Cells: Expression of a Tumor-specific Variant and Association with Microtubules. J Neurooncol 59, 15–26 (2002). https://doi.org/10.1023/A:1016373015569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016373015569

Navigation